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a b s t r a c t 

Generative Adversarial Networks (GANs) have been widely used to generate realistic-looking instances. 

However, training robust GAN is a non-trivial task due to the problem of mode collapse. Although many 

GAN variants are proposed to overcome this problem, they have limitations. Those existing studies either 

generate identical instances or result in negative gradients during training. In this paper, we propose a 

new approach to training GAN to overcome mode collapse by employing a set of generators, an encoder 

and a discriminator. A new minimax formula is proposed to simultaneously train all components in a 

similar spirit to vanilla GAN. The orthogonal vector strategy is employed to guide multiple generators 

to learn different information in a complementary manner. In this way, we term our approach Multi- 

Generator Orthogonal GAN (MGO-GAN). Specifically, the synthetic data produced by those generators are 

fed into the encoder to obtain feature vectors. The orthogonal value is calculated between any two fea- 

ture vectors, which loyally reflects the correlation between vectors. Such a correlation indicates how dif- 

ferent information has been learnt by generators. The lower the orthogonal value is, the more different 

information the generators learn. We minimize the orthogonal value along with minimizing the gener- 

ator loss through back-propagation in the training of GAN. The orthogonal value is integrated with the 

original generator loss to jointly update the corresponding generator’s parameters. We conduct extensive 

experiments utilizing MNIST, CIFAR10 and CelebA datasets to demonstrate the significant performance 

improvement of MGO-GAN in terms of generated data quality and diversity at different resolutions. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Generative Adversarial Networks (GANs) [1] are a class of deep

enerative models that have been successfully applied to many

eal-world applications [2–4] . A vanilla GAN consists of two com-

onents, a discriminator D and a generator G. G learns to gener-

te new candidates with the same statistical distribution as the

raining samples, while D estimates the probability that a sam-

le came from the training dataset rather than G . In the training

rocess, both components play a minimax game and contest with

ach other until they reach the Nash Equilibrium. Although GAN

hows powerful generative capabilities [5,6] , training robust GAN

s still a challenge because it can be easily trapped into the prob-
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em of mode collapse in which the generator only concentrates on

everal, or even only one single, modes rather than all modes. 

When we use a neural network to map the real data from orig-

nal data space into the latent space, the mapped data points usu-

lly lie on areas with different sizes. We take the MNIST dataset

s the example. Some digits are represented over a very small area

nd others over a much larger area [7] . It causes that each time the

eural network attempts to pick data points from the larger area

n the latent space, even though the sampling is random. In other

ords, such a mapping renders that the model focuses on the data

oints with large mapping area [8] , missing many other modes.

oreover, the Jensen Shannon Divergence is maxed out when the

enerated data distribution ( p G ) and real data distribution ( p r ) have

 negligible overlapping area, resulting in vanishing gradient. Un-

er such a scenario, the generator apparently fails to capture all

he modes of the data, further aggravating mode collapse. The term

mode” in our paper refers to the category and diversity within

he category. The category indicates the labels of instances, while

he diversity within the category indicates the diverse generated
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Fig. 1. Illustrative example of transformation from low dimension Z to high dimension χ . The generator G (z) : Z → χ with prior z ~ p z ( z ) expects to learn all modes of 

original data, however, such a transformation is not surjective. Sub-figure (a) shows an example of a non-surjective transformation. In sub-figure (a), the disconnected red 

lines indicate the different original data modes (e.g., categories ‘0’, ‘1’, etc.) while the blue curve indicates the learned modes by G . Sub-figure (b) shows the transformation 

results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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instances with the same label. Hence, mode collapse in our pa-

per indicates: 1) the vanilla generator cannot cover all categories;

2) the generated data within the same category tend to be iden-

tical. See Fig. 1 for a descriptive illustration of mode collapse. In

Fig. 1 (b), there exists identical instances and categories ‘2’, ‘5’ and

‘6’ are not captured. 

Although many GAN variants have been proposed to tackle

this problem, there are still challenges. Wasserstein GAN (WGAN)

[9] adopts wasserstein distance to measure the dissimilarity be-

tween real data distribution ( p r ) and generated data distribution

( p G ). However, the weight clipping method adopted by WGAN can-

not avoid information loss, resulting in capacity underuse issue

[10] . Spectral Normalization GAN (SN-GAN) [11] adopts spectral

normalization ( λ) to make discriminator Lipschitz continuous, so it

can reserve the weight array ( W ) information to the greatest extent

by using W √ 

λ
. However, since the 1-Lipshitz continuity is achieved

by 
W i j √ 

λ1 

, the generated data would be inevitably mapped into a

specific color sub-space, rendering all generated objects taking the

same color. This can also be viewed as mode collapse. 

The very recent attempt is to employ multiple generators to ad-

dress mode collapse, motivated by the limitations of single gener-

ator for learning different modes [12,13] . Multiple Generators GAN

(MGAN) [13] employs a mixture of generators and adopts “shared

parameters” method to simultaneously train all generators. Since

there are no restrictions enforcing generators to learn all modes,

these generators tend to learn the same modes, resulting in pro-

ducing identical instances. Considering the significance of these

challenges and the potential benefits of overcoming them, it is

worth to develop a novel approach to addressing the problem of

mode collapse. 

In this study, we propose a novel approach to training multi-

generator model with orthogonal vectors. The distributions of gen-

erated data from multiple generators are jointly induced to a

mixture distribution for matching the original data distribution

while encouraging each generator to learn different information

of original data. To achieve this, we employ orthogonality strat-

egy [14,15] to construct orthogonal vectors based on the outputs

of generators, and enforcing orthogonal vectors contain different

information during training. Hence, we term our approach Multi-

Generator Orthogonal GAN (MGO-GAN). Initially, the generated data

of all generators are fed into an extra encoder to obtain feature

vectors. Then, we calculate the inner product between each pair

of feature vectors to obtain the orthogonal value, which loyally re-

flects the correlation between two vectors. The lower the orthogo-
al value is, the more information the two vectors hold. The lower

rthogonal value also demonstrates how different information has

een learnt by the two generators. Therefore, we need to mini-

ize the orthogonal value during training, and this is achieved by

ack-propagation along with minimizing the generator loss. After

hat, the orthogonal value is integrated with the generator loss to

ointly update the corresponding generator’s parameters, rendering

his generator learning such information while other generators

old less. A novel loss function is able to be established among

 set of generators, an encoder and a discriminator. Furthermore,

e provide theoretical analysis that the Jensen-Shannon (JS) diver-

ence [16] between the mixture distribution and the original data

istribution is minimal, and the orthogonal value between any two

eature vectors is also minimal. 

In summary, the major contributions of this study are described

s follows: 

• This paper proposes a novel MGO-GAN model which learns a

mapping function parameterized by multiple generators from

the randomized space to the original data space, overcoming

the problem of mode collapse. 
• This paper utilizes the back-propagation to minimize the or-

thogonal value in GAN and combine the orthogonal value with

the generator loss to jointly update the parameters of generator

from both theoretical and empirical perspectives, offering new

insights into the success of MGO-GAN. 
• Through comprehensive experiments on three datasets with

different resolutions, we demonstrate the effectiveness of the

proposed approach. 

The rest part of this paper is organized as follows. In

ection 2 existing works are discussed. We review the GAN model

nd orthogonal vectors in Section 3 . MGO-GAN is demonstrated in

etail in Section 4 . In Section 5 we show our experimental results.

ection 6 serves as our conclusion. 

. Related work 

The problem of mode collapse has attracted a lot of attentions,

nd many GAN variants are proposed to tackle this problem. Ac-

ording to the strategies these algorithms adopt, here we group

hese studies into two categories. 

Loss Function Creativity. The generated data distribution p G 
annot completely match the original data distribution p r , which

s caused by the joint consequence of JS divergence and the negli-
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ible overlapping area between p G and p r . If this overlapping area

s negligible, JS divergence becomes a constant (i.e., log2). The con-

tant loss cannot deduce a meaningful derivation for updating the

enerator’s parameters, such that G cannot guarantee producing

lausible data. In this way, researchers attempt to modify the loss

unction to address this problem. Wasserstein GAN [9] replaces the

S divergence with Wasserstein distance, because Wasserstein dis-

ance [17] can measure the dissimilarity between p G and p r even

hough the supports of them are disjoint. For approaching the

asserstein distance, WGAN adopts Kantorovich-Rubinstein duality

o transform the standard Wasserstein distance into a discrimina-

or function (i.e., f ∗w 

(x ) ), and the 1-Lipshitz continuity can guaran-

ee this transformation. For satisfying 1-Lipshitz continuity, 
∂ f ∗w (x ) 

∂x 
as been limited to a specific range (e.g., ( −0.01, 0.01)). However,

he optimal strategy is either to take the largest value (i.e., 0.01) or

ake the smallest value (i.e., −0.01) for all parameters under such a

cenario, causing gradients vanishing or explosion. Moreover, only

ertain optimizers (e.g., RMSProp or SGD ) in WGAN are suitable for

ptimization [9] but momentum based ones (e.g., Adam ) may turn

he gradients negative. 

Takeru et al. [11] proposed a novel weight normalization

ethod to achieve the 1-Lipshitz continuity, and it is termed as

pectral normalization GAN (SN-GAN). SN-GAN uses this spectral

ormalization to control the Lipschitz constant of the discriminator

unction f . To calculate the spectral normalization, SN-GAN adopts

ingular Value Decomposition (SVD) to get the largest singular

alue and views this value as the spectral normalization, and uses
W i j √ 

λ1 

to enforce the discriminator 1-Lipshitz continuity in which λ1 

ndicates the largest singular value of W (weight matrix of discrim-

nator) and W ij indicates a specific element within W . However,

uch a strategy does not completely correspond to penalising the

pectral norm [18] . In addition, SN-GAN requires that each layer of

he network satisfies 1-Lipshitz continuity handled by 
W i j √ 

λ1 

, such a

onstraint causes that the generated instances are mapped into a

pecific color sub-space, rendering all generated objects taking the

ame color. This can also be viewed as mode collapse. 

To produce diverse generated data, Localized GAN (LGAN)

19] employs local coordinate chart G ( x, z ) around data point x

o learn local geometry near x , with its local coordinates z drawn

rom a random distribution p z ( z ). The tangent vectors located at x

re employed to guarantee learning success. Note that a linear tan-

ent space formed by N tangent vectors would collapse if it is di-

ensionally deficient. To avoid this, the orthonormal counterpart is

tilized to prevent the collapse of the tangent space. In fact, LGAN

equires many assumptions which are not practical in real-world

pplications. For example, the origin of the local coordinates z is

ssumed locating at the given point x . It is not easy to achieve this

n practice, given that p z ( z ) is usually a simple, easy-to-sample dis-

ribution while p r ( x ) is a complex, high-dimensional distribution.

he noise code cannot fill in the whole high-dimensional distribu-

ion, resulting in no noise code around many points. In addition,

he generator of LGAN is made up of encoder-decoder, the gen-

rated data quality cannot be guaranteed (generated images are

lurred) [7] . 

Architecture Creativity. Given the fact that the single genera-

or cannot capture all modes during training, some researchers at-

empt to employ multiple generators to learn different information.

olstikhin et al. [20] trained a mixture of generators with boost-

ng techniques named AdaGAN. At every step, AdaGAN adds a new

omponent into a mixture model by running a GAN algorithm on

 reweighted sample, and it aggregates many potentially weak in-

ividual predictors to form a strong composite predictor. However,

equentially training multiple generators needs more extra cost. In

ddition, AdaGAN assumes that a single generator can produce im-

ressive images of some modes, so a mixture of generators can
over the whole data space. Such an assumption is impractical in

he real world [13] . Arora et al. [21] , alternatively, trained a mix-

ure of generators and discriminators to play the minimax game

ith the reward function being the weighted average reward func-

ion between any pair of generator and discriminator. This strategy

s not only computationally expensive but also lacks a mechanism

o enforce the divergence among generators. Ghosh et al. [12] pro-

osed MAD-GAN, which is a multi-agent GAN architecture incorpo-

ating multiple generators and one multi-class discriminator. Not

nly can this discriminator detect whether a sample is fake or not,

ut also can predict which generator produces the sample. The loss

unction in this study, however, focuses on detecting whether a

ample is fake or not and does not directly encourage generators

o produce diverse instances. 

MGAN is recently proposed by Hoang et al. [13] , which employs

 set of generators G 1: K , a single discriminator D and an extra clas-

ifier C to construct the architecture of MGAN. To train MGAN, a

ovel minimax formulation is developed to establish among those

omponents. In MGAN, K generators altogether induce a mixture

istribution named p model . An index μ indicates μth generator

 μ( z ), and μ follows a multinomial distribution. MGAN utilizes JS

ivergence to handle equilibrium and mode collapse problems dur-

ng training. For K generators, MGAN aims to maximize the JS di-

ergence among these generators. Generators implicitly hold dif-

erent information if JS divergence is log2 among p G 1 , p G 2 , . . . , p G K .

ecreased JS divergence between p r and p model indicates generated

ata approaching to original data. Since MGAN adopts “shared pa-

ameters” strategy to simultaneously train all generators, it tends

o hold the same parameters. Under such a scenario, all generators

n MGAN produce identical instances. In other words, MGAN can-

ot well address the problem of mode collapse. More details are

hown in Appendix A . 

. Preliminaries 

.1. Generative adversarial network 

Although Generative Adversarial Networks (GANs) [1] were in-

roduced in the introduction, we formally describe it below to es-

ablish continuity. GANs were developed by Goodfellow as a novel

enerative model to simultaneously train a generator G and a dis-

riminator D using the following function: 

in 

G 
max 

D 
V (G, D ) = E x ∼p r (x ) [ log D (x )] 

+ E z∼p z (z) [ log (1 − D (G (z)))] (1) 

here D indicates the discriminator, G indicates the generator, and

oth are neural networks. x comes from a distribution p r ( x ) un-

erlying the original dataset and z comes from a pre-defined noise

istribution p z ( z ) which is usually an easy-to-sample distribution,

.g., Uniform distribution with ( −1, 1) or Gaussian distribution

ith (0, 1). G tries to fool D into accepting its outputs as real by

aximizing its score D ( G ( z )), and this is achieved by the following

ptimization function. 

in 

G 
V (G, D ) = min 

G 
(E z∼p z (z) [ log (1 − D (G (z)))]) (2) 

Moreover, the discriminator D takes an input from either the

riginal dataset or the generator and produces a probability that

he input comes from the original dataset rather than G . In general,

he discriminator D strives to minimize the score it assigns to the

enerated data G ( z ) by minimizing D ( G ( z )) and maximize the score

t assigns to the original data x by maximizing D ( x ). In this way,

he optimization function for D is shown as follows. 

ax 
D 

V (G, D ) = max 
D 

(E x ∼p r (x ) [ log D (x )] 

+ E z∼p z (z) [ log (1 − D (G (z)))]) (3) 
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Fig. 2. P r ( x ) is the 5-Gaussian (coral clusters) and we assume in this case each Gaussian indicating a single mode. The example shows that the vanilla GAN maps the random 

Gaussian to a certain Gaussian at different epochs (steel-blue cluster in sub-figures (a), (b) and (c)). Our proposed MGO-GAN captures all the five Gaussian modes as shown 

in sub-figure (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In this work, the discriminator and the generator are alterna-

tively optimized, and JS divergence is utilized to measure the dif-

ference between p r and p G . JS divergence reaches its lowest value

as the discriminator and the generator reach the Nash Equilibrium

where D ( G ( z )) = D ( x ) = 0.5. The GAN model gets converged under

such a scenario. 

3.2. Mode collapse 

When a network maps a dataset into a latent space, the

mapped areas are different [7] . To obtain the generalization capa-

bility of GAN, we usually adopt the stochastic method (i.e., stochas-

tic gradient descent optimization or stochastic sampling method)

as training strategy. However, such a strategy implicitly indicates

that each time the neural network more easily tends to pick data

points from the larger areas than to pick data points from the

smaller areas in the latent space, given that the mapped data

points lie on areas with different sizes. Considering an extreme

scenario, the GAN model each time picks data points from the

largest region. Under such a scenario, the remaining modes ly-

ing on other areas are missed even though G produces realistic-

like data. Moreover, when G maps noise sampled from randomized

space Z into the original data space, such a mapping is not surjec-

tive [8,22] . This further deteriorates the capability of G to capture

different modes. 

Moreover, the discriminator D actually discourages the GAN

model to capture all modes. On the one hand, D cannot give how

many modes are captured in real-world applications, because D

is only used to evaluate the probability that a sample is from

the original dataset rather than G . Therefore, judging whether all

modes are captured by G becomes a non-trivial task. On the other

hand, D always maximizes the probability of assigning the correct

label to both the original data and generated data (See Eq. (3) )

during training [1] . In other words, D judges all samples generated

by G as fake (low probability for D ( G ( z ))) even though G captured

some original data modes. To fool D, G searches for other modes

and tries to learn them. Since the mapping is not surjective, GAN

repeats such a cat-and-mouse game and cannot stop the training

process. Note that there is no countermeasure in Eq. (1) that ex-

plicitly forces generator G to get out from this scenario. Hence,

G has the tendency to produce identical but safe instances rather

than diverse but unsafe samples. Fig. 2 shows a cat-and-mouse ex-

ample. Moreover, we also validate our proposed MGO-GAN (5 gen-

erators are employed) in the same case. Obviously, our proposed

MGO-GAN captures all the five Gaussian modes (See sub-figure

(d)). 

3.3. Orthogonal vectors 

Orthogonal vectors [14,15] are referred to two or more vectors

whose inner product is 0, i.e., the vectors are perpendicular to each

other. If two non-zero vectors are orthogonal, they must be linearly

independent. The definition of orthogonal vectors is shown as fol-

lows. 
Assuming V is a finite dimensional linear space in R , and vec-

ors α and β ( α, β ∈ R and α � = β) are two non-zero vectors which

re defined in V . In this way, V is defined as the Euclidean space,

nd the cosine of intersection angle ( O(α, β) ) between α and β is

efined as the orthogonal value which can be defined as Eq. (4) . 

(α, β) = 

∣∣∣∣ (α, β) 

| α|| β| 
∣∣∣∣ (4)

O(α, β) can loyally reflect the correlation between α and β .

he smaller the value of O(α, β) is, the more different information

he two vectors contain. The motivations of adopting orthogonal

ectors are twofold: 

1. The orthogonal value indicates how different information

has been learnt by generators. The two vectors ( α and β) are

produced by an encoder which takes the outputs of two differ-

ent generators ( G i and G j ) as its input. The smaller the value

of O(α, β) is, the more information the two generators have

learned. Therefore, O(α, β) could be used as an indicator to

measure the difference of information learned by the two gen-

erators. We take the MNIST dataset as the example. Assuming

there are 2 generators ( G 1 . G 2 ), G 1 has learned the digits ‘0’-‘4’.

If G 2 has learned the same digits, the two encoded vectors hold

the homogeneous feature information after we feed all the gen-

erated instances into the encoder. Under such a scenario, α ≈ β
and O(α, β) holds a largest value. If G 2 has learned different

digits (e.g., figures ‘5’-‘9’), the encoded vector ( α) hold totally

different f eature information, i.e., α � = β . Under such a case,

O(α, β) holds a small enough value. In this paper, we assume

this small enough value as δ. In this way, the orthogonal value

loyally reflects how different information has been learnt by

generators. 

2. The orthogonal value can be integrated into the training

of GAN. To guarantee that the orthogonal value can be min-

imized in the training of GAN, we minimize the orthogonal

value ( O(α, β) ) along with minimizing the generator loss with

back-propagation, and integrate the orthogonal value ( O(α, β) )

with JS divergence ≥ 0 to jointly update the parameters of

generators. This is because the orthogonal value ( O(α, β) ) sat-

isfies nonnegativity and Cauchy inequality [23] in the Euclidean

space. 

In this manner, MGO-GAN enables multiple generators to learn

ifferent information in a complementary and efficient way. In the

ext section, we present our proposed MGO-GAN and give a theo-

etical analysis, essentially showing that the training criteria allows

ultiple generators to learn different information. 

. MGO-GAN 

As described in previous analysis, employing one single gener-

tor is hard to learn all modes of original data. To address this

roblem, MGO-GAN employs multiple generators and orthogonal

ectors to learn those modes. In this way, there are two important
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ssues to be addressed: 1) How the generators learn different in-

ormation; 2) Will MGO-GAN converges to an equilibrium. 

.1. Theoretical analysis 

We employ a set of generators G 1: K to jointly build a mapping

unction that can map the random noise code z from randomized

pace Z into the data space χ . We define a prior distribution on Z
s p z ( z ) (e.g., Uniform with ( −1, 1) or Gaussian with (0, 1)) where

he generators sample noise from. The original data follows a spe-

ific distribution which we term p r ( x ). As a GAN variant, MGO-

AN still plays a minimax game, i.e., maximizing the discriminator

 and minimizing the generators G 1: K . Different from the vanilla

AN, each generator in MGO-GAN is encouraged to focus on such

he information while other generators do not hold. In this way,

he objective function of MGO-GAN can be defined as follows: 

in 

G 1: K 

max 
D 

V (G 1: K , D ) = E x ∼p r (x ) [ log D (x )] 

+ 

1 

K 

K ∑ 

i =1 

E z∼p z (z) [ log (1 − D (G i (z)))] 

+ 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) (5) 

here K indicates the number of generators and λ indicates a

oefficient. E indicates an Encoder which is used to extract the

eature vectors of generated data produced by K generators, such

hat the feature vectors are mapped into the same space to be

alculated the corresponding orthogonal value. For the last term∑ 

 � = j 
λO(E(G i (z)) , E(G j (z))) , i, j belong to the range of [1, K ] while

 � = j . In MGO-GAN, D still tries to maximize the probability of as-

igning the correct label to both training and generated samples,

nd G tries to fool D into accepting its outputs as real data by

aximizing its score D ( G 1: K ( z )). The optimization formulas for D

nd G 1: K are shown as follows: 

ax 
D 

V (G 1: K , D ) = E x ∼p r (x ) [ log D (x )] 

+ 

1 

K 

K ∑ 

i =1 

E z∼p z (z) [ log (1 − D (G i (z)))] 

in 

G 1: K 

V (G 1: K , D ) = 

1 

K 

K ∑ 

i =1 

E z∼p z (z) [ log (1 − D (G i (z)))] 

+ 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) 

Each generator G i implicitly defines a probability distribution

p G i as the distribution of the generated samples G i ( z ), K genera-

ors altogether induce a mixture distribution to fit p r . We consider

he optimal discriminator D for generators G 1: K . Assuming the dis-

riminator D has enough capacity, we show below that the optimal

iscriminator D is at the equilibrium point p r = 

p G 1 
+ p G 2 + ... + p G K 

K . 

roposition 1. For G 1: K fixed, the optimal discriminator D is: 

 

∗(x ) = 

p r 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

(6) 

roof. The training criterion for the discriminator D , given a mix-

ure of generators G 1 , G 2 , ..., G K , is to maximize the quantity

 ( G , D ). 
1: K 
 (G 1: K , D ) = 

∫ 
x 

p r (x ) log D (x ) dx 

+ 

1 

K 

(∫ 
z 

p z (z) log [1 − D (G 1 (z))] dz 

+ 

∫ 
z 

p z (z) log [1 − D (G 2 (z))] dz 

+ . . . + 

∫ 
z 

p z (z) log [1 − D (G K (z))] dz 

)

= 

∫ 
x 

p r (x ) log D (x ) + 

1 

K 

p G 1 (x ) log [1 − D (x )] 

+ 

1 

K 

p G 2 (x ) log [1 − D (x )] 

+ . . . + 

1 

K 

p G K (x ) log [1 − D (x )] dx 

= 

∫ 
x 

p r (x ) log D (x ) 

+ 

p G 1 (x ) + . . . + p G K (x ) 

K 

log [1 − D (x )] dx 

�

We compute the partial derivation of ∂V (D (x )) 
∂D (x ) 

, and get p r 
D (x ) 

=
1 
K 

p G 1 
+ p G 2 + ... + p G K 

1 −D (x ) 
. In this way, it can be easily seen that D

chieves its maximum in [0,1] at p r 

p r + 
p G 1 (x ) + p G 2 (x ) + ... + p G K (x ) 

K 

. Hence,

q. (6) is obtained, and the optimum of Eq. (6) is 1 
2 when p r =

p G 1 
+ p G 2 + ... + p G K 

K . Based on Proposition 1 , we substitute Eq. (6) into

he Eq. (5) , we get: 

(G 1: K ) = max 
D 

V (G 1: K , D ) 

= E x ∼p r (x ) [ log D 

∗(x )] 

+ 

1 

K 

K ∑ 

i =1 

E z∼p z (z) [ log (1 − D 

∗(G i (z)))] 

+ 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) 

≈ −2 log 2 + KL 

(
p r || p r + 

p G 1 + p G 2 + ... + p G K 
K 

2 

)

+ KL 

(
p G 1 + . . . + p G K 

K 

|| p r + 

p G 1 + ... + p G K 
K 

2 

)
+ δ

= −2 log 2 + 2 JSD 

(
p r || p G 1 + p G 2 + . . . + p G K 

K 

)
+ δ (7) 

here KL indicates Kullback-Leibler divergence [24] and JSD indi-

ates the Jensen-Shannon divergence [25] . From Eq. (7) , we can see

hat the training criterion is determined by both components (i.e.,

enerators ( G 1: K ) and orthogonal value ( O(E(G i (z)) , E(G j (z))) )).

n the early steps of training, the difference between p r and
p G 1 

+ p G 2 + ... + p G K 
K is large. O(E(G i (z)) , E(G j (z))) is also large. This

s because the generated data are basically noise in the first

ew epochs. As the epochs increase, generated data approxi-

ates original data and the orthogonal value becomes small.

his is achieved by training criterion with back-propagation

hrough ∇ θ

(
1 
K log (1 − D (G i θ

(z))) + O(E (G i θ
(z)) , E (G j θ

(z))) 
)

in a 

imilar way as vanilla GAN, j ∈ 1: K and j � = i . The smaller or-

hogonal value reflects generators learning different information. If

ach generator learns the information while other generators do

ot hold, the orthogonal value is the minimum. Here, we assume

he minimum as δ. A detailed derivation of Eq. (7) is shown in

ppendix B . 

heorem 1. The global minimum of the virtual training criterion V ( G )

s achieved if and only if p r = 

p G 1 
+ p G 2 + ... + p G K and each generator
K 



6 W. Li, L. Fan and Z. Wang et al. / Pattern Recognition 110 (2021) 107646 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 MGO-GAN. 

Input: Original samples; noise z; 

Output: Simulation data. 

def Cal-Orthogonal(idx,K): 

O = 0 

for 1:K do 

O+ = 

∣∣∣ (E(G i ) ,E(G idx )) | E (G i ) || E (G idx ) | 
∣∣∣, idx � = i 

return O 

Adam optimizer and BCE loss function are adopted. The quantity 

of generator is K, and m indicates mini-batch samples. 

E represents the Encoder. 

for number of iterations do 

• Sampling minibatch of m noise samples z 1 , . . . , z m from p z (z) . 
• Sampling minibatch of m original samples x 1 , . . . x m from real 

dataset. 
• Updating the parameters of D by ascending its stochastic 

gradient. 
• � θD 

1 
m 

∑ m 

1 { log D (x (i ) ) + 

1 
K log (1 − D (G 1: K (z (i ) ))) } . 

• Sampling minibatch of m noise samples z 1 , . . . , z m . 
• Iteratively calculating the orthogonal value O idx = 

Cal-Orthogonal(idx,K) on each generator ( G idx ), idx ∈ [1 : K] . 
• Updating the generators’ parameters and minimizing the 

orthogonal value by descending its stochastic gradient. 
• � θG idx 

1 
m 

∑ m 

1 { 1 K log (1 − D (G idx θ
(z (i ) )) + O(E(G idx θ

(z (i ) )) , 

E(G j θ
(z (i ) ))) } , j ∈ 1 : K and j � = idx . 

end for 
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e  
captures information which other generators do not capture. At that

point, V ( G ) achieves the optimal value −2 log 2 + δ. 

Proof. For p r = 

p G 1 
+ p G 2 + ... + p G K 

K , D 

∗(x ) = 

1 
2 according to

Eq. (6) . Then, p r = 

p G 1 
+ p G 2 + ... + p G K 

K is substituted into the

Eq. (7) , we get C(G ) = −2 log 2 + JSD (p r || p G 1 + p G 2 + ... + p G K K ) +
O(E(G i (z)) , E(G j (z))) , i, j ∈ [1 , K] , i � = j. The JS divergence

between original data distribution and mixture distri-

bution of generated data is always non-negative and

reaches the minimum 0 only when p r = 

p G 1 
+ p G 2 + ... + p G K 

K ,

JSD (p r || p G 1 + p G 2 + ... + p G K K ) = 0. In MGO-GAN, the orthogonal

value is minimized along with minimizing the generator loss

with ∇ θ

(
1 
K log (1 − D (G i θ

(z))) + O(E (G i θ
(z)) , E (G j θ

(z))) 
)
. In other

words, the orthogonal value is gradually decreased when the

generator loss is decreased. Note that the orthogonal value is then

integrated with generator loss to jointly update the parameters of

this generator. The generator gradually holds such an information

while other generators do not hold. The orthogonal value would

be minimum when JS divergence reaches the minimal status.

Under such a scenario, V (G ) = −2 log 2 + δ. �

Note that one single generator usually causes that the gener-

ated data distribution p G holds a negligible (or even none) over-

lapping area with original data distribution p r . Given V v anil l a (G ) =
−2 log 2 + 2 J SD (p r || p G ) , J SD (p r | p G ) = log 2 if p G and p r holds a

negligible overlapping area [1,26] . Under such a scenario, V vanilla ( G )

equals to 0. In other words, the gradients of generator G disappear,

and G cannot get updated. However, our proposed MGO-GAN can

avoid this problem. We now state this properly in the following

Theorem. 

Theorem 2. The gradients vanishing problem could be avoided in

MGO-GAN, and the generators still get updated even though the mix-

ture distribution (i.e., p m 

) deduced by all generators has a negligible

overlapping area with original data distribution p r . 

Proof. For MGO-GAN, V (G ) = −2 log 2 + 2 JSD (p r || p m 

) +
O(E(G i (z)) , E(G j (z))) . Assuming the mixture distribution p m 

has a negligible overlapping area with original data dis-

tribution p r at a certain epoch, JSD ( p r || p m 

) still equals to

log 2, such that −2 log 2 + 2 JSD (p r || p m 

) equals to 0. However,

O(E(G i (z)) , E(G j (z))) is not equivalent to 0 under such a scenario.

Hence, V ( G ) is also not equivalent to 0, such that the generators

still get updated. Therefore, the gradients vanishing problem could

be avoided in our proposed MGO-GAN. �

The pseudo-code of MGO-GAN algorithm is formally presented

in Algorithm 1 . Our generators and discriminator architectures

are from vanilla DCGAN [27] , and the details of components still

adopt Conv-BatchNorm-ReLu [28] (Generators G 1: K ) and Conv-

BatchNorm-LeakyReLu [29] (Discriminator D ). In Algorithm 1 , E in-

dicates an Encoder which abstracts the feature information of gen-

erated instances. O idx indicates the orthogonal value among the

current generator ( G idx ) and other generators ( G i , i � = idx and i ∈ [1,

K ]), i.e., O(D (G idx (z)) , D (G 1: id x −1 ,id x +1: K ( z))) . After that, we inte-

grate the orthogonal value O idx with the original generator loss to

update the parameters of the corresponding generator ( G idx ). The

other generators also adopt the same strategy to calculate the or-

thogonal value and to be updated. The architecture of our proposed

MGO-GAN is shown in Fig. 3 . 

4.2. Convergence of Algorithm 1 

Proposition 2. Assuming all generators deduce a mixture of distribu-

tion p m 

= 

p G 1 
+ p G 2 + ... + p G K 

K and D is in the optimal status given G 1: K 

if D has enough capacity, then p m 

converges to p r . 
roof. Considering V (G 1: K , D ) = U(p m 

, D ) is a convex function in

 m 

obtained from the optimization functions, i.e., Eqs. (6) and (7) .

he subderivatives of a supremum of convex functions include

he derivative of the function at the point in which the maxi-

um is obtained. That is to say, if f (x ) = sup α∈A f α(x ) and f α( x ) is

onvex in x for every α, then ∂ f β ( x ) ∈ ∂ f if β = argsup α∈A f α(x ) .

ccording to Sion minimax theorem [30] , let p m 

and p r be

on-void convex and compact subsets of two linear topological

paces, then min 

G 1: K 

max 
D 

V (G 1: K , D ) ≥ max 
D 

min 

G 1: K 

V (G 1: K , D ) . We can de-

uce each time computing a gradient descent update for p m 

given

 set of generators G 1: K and an optimal D. sup D U ( p m 

, D ) is con-

ex in p m 

with a unique global optimum as proven in optimization

rocess, therefore with sufficiently small updates of p m 

, p m 

con-

erges to p r . �

. Experiments 

For the experiments, three commonly used public datasets,

NIST, CIFAR10 and CelebA, are studied. The MNIST dataset con-

ains 60,0 0 0 gray-scale images with size 28 × 28. CIFAR10 and

elebA respectively contain 50,0 0 0 and 10,0 0 0 RGB images. In CI-

AR10, the size of each image is 3 × 32 × 32, and that size is

 × 178 × 218 in CelebA. Both MNIST and CIFAR-10 datasets

re labeled with 10 categories. The CelebA dataset has no explicit

abels. 

Based on the selected datasets, the neural network settings of

GO-GAN components are shown in Fig. 4 . Note that each gener-

tor in MGO-GAN holds the same setting. They sample noise from

he standard Gaussian distribution (0, 1) ( p z ( z )). Since WGAN [9] ,

N-GAN [11] , LGAN [19] and MGAN [13] are representatives of GAN

ariants on addressing the problem of mode collapse, they are em-

loyed as the baselines in this study. For all models, we adopt the

ame hyperparameters (e.g., E poch = 200 ) and the same running

nvironment (e.g., Pytorch framework). As to the length of encoded
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Fig. 3. The architecture of our proposed MGO-GAN in which a set of generators ( G 1: K ), an Encoder ( E ) and a discriminator ( D ) are employed. Dotted arrows indicate sampling 

from a specific distribution. E can help produce feature vectors ( E ( G i ( z ))), which is used to calculate the orthogonal values ( O i ) via inner product that is marked by the cyan 

line. The orthogonal value is integrated into the corresponding generator loss to update the corresponding generator’s parameters, which is marked by the red line. All 

generators deduce a mixture distribution to approximate the original data distribution. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 4. Architectural details of MGO-GAN for MNIST, CIFAR10 and CelebA datasets. We use Adam gradient method [32] and BCE to update the parameters of all components. 

The parameter of LeakyRelu [29] is set to 0.02 and that of Dropout [33] is set to 0.5. 
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Fig. 5. The red ellipse indicates the minimal orthogonal value during training on 

MNIST dataset. At the nadir of the orthogonal value, MGO-GAN is finalized for gen- 

erating synthetic images which are shown in Fig. 6 (e). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

‘  

q  

t  

i  

m  

G  
ector, we set the feature vector size to 10 in our experiments.

ote that the relative performance of model is not sensitive to dif-

erent feature vector sizes [31] . Besides, we conduct experiments

n MNIST with feature vector size set to 20, the performance is

imilar to the case with feature vector size set to 10. 

.1. MNIST 

MNIST dataset contains 10 categories from figure ‘0’ to figure

9’. We first validate our proposed MGO-GAN on this dataset and

ompare experimental results with baselines. For MGAN and MGO-

AN, two generators are employed. Since MGO-GAN adopts or-

hogonal value to guide multiple generators to learn different in-

ormation, and this is achieved by minimizing the orthogonal value

long with minimizing the original generator loss, we illustrate the

rthogonal values as shown in Fig. 5 . Here, MGO-GAN produces the

enerated images at the nadir, which is marked by red ellipse. This

s because smaller orthogonal value implicitly indicates that gen-

rators hold more different information. The generated images of

GO-GAN are shown in Fig. 6 (e), and other sub figures ((a)–(d))

how the generated images of baselines. 

The first five rows of sub-figure (d) and sub-figure (e) are from

he first generator of MGAN and MGO-GAN, while the last five

ows are from the second generator of both models. In Fig. 6 , we

an see that our proposed MGO-GAN outperforms other models.

he generated images produced by WGAN lack figures ‘4’, ‘5’ and
6’, while the samples generated by SN-GAN and LGAN hold low

uality. As for MGAN, there exist many identical instances. In addi-

ion, MGAN does not capture the figures ‘0’, ‘1’, ‘2’, ‘3’ and ‘9’. This

s because MGAN utilizes the shared parameters strategy to train

odel, which causes generators learning same modes. In MGO-

AN, all categories are captured with diverse synthetic instances.
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Fig. 6. Generated images by baselines and MGO-GAN. For MGAN and MGO-GAN, we employ 2 generators and each generator produces 50 samples in this case. The first 

five rows show the outputs of one generator and the last five rows show the outputs of another generator. As to SN-GAN, LGAN and WGAN, each of them produces 100 

instances. 

Table 1 

MNIST scores and FID scores of generated data on MNIST 

dataset. 

Model MNIST Score FID Score 

WGAN [9] 6.006 75.806 

SN-GAN [11] 6.514 61.153 

LGAN [19] 6.760 83.278 

MGAN [13] 7.176 124.427 

MGO-GAN 7.454 59.369 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Inception scores and FID scores of generated data on CIFAR10. 

Model Inception Score FID Score 

WGAN [9] 4.035 218.195 

SN-GAN [11] 3.905 229.135 

LGAN [19] 2.896 293.714 

MGAN [13] 5.087 225.499 

MGO-GAN 6.130 198.894 
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The features (e.g., shape or angle) are different even within the

same category. In addition, the experimental results also show that

the generators of our proposed MGO-GAN learns different modes

from each other. For generator one of MGO-GAN (the first five rows

in sub-figure (e)), all figures are captured except for ‘5’; but the

generated instances from the second generator (the last five rows

in sub-figure (e)) do not hold the figure ‘2’. However, the combi-

nation of generated images from the two generators captures all

modes of data, which shows the effectiveness of MGO-GAN on ad-

dressing the problem of mode collapse. 

To quantitatively evaluate the quality and the diversity of gen-

erated images, we adopt the MNIST Score [34] and the Frechet In-

ception Distance Score (FID Score) [35] . MNIST Score is similar to

Inception Score but using a classifier adapted to the MNIST training

data instead of the Inception network [34] . For FID score, a lower

value denotes more diverse generated images, and FID score be-

comes higher when generated instances are lack of diversity. This

is because FID score is sensitive to mode collapse [35] . Assuming

that original data distribution and generated data distribution are

both multivariate Gaussian distributions, FID measures the Frechet

distance, which is also the 2-Wasserstein distance, between the

two distributions. The MNIST scores (the higher the better) and

the FID scores (the lower the better) are shown in Table. 1 . Ob-

viously, our proposed MGO-GAN outperforms baselines in terms of

achieving the highest MNIST score and the lowest FID score. 

Since two generators capture few modes of data and produce

many identical instances in MGAN, one may wonder whether the

performance of MGAN could be improved by employing more

generators while each generator is required to produce fewer in-

stances. Thus, we conduct a pair of experiments in which the num-

ber of generators is set to 5 or 10, and each generator is only al-

lowed to produce 10 instances for both MGAN and MGO-GAN. The

generated images are shown in Fig. 7 , and the samples at each

row are generated by the same generator. Obviously, MGO-GAN

still outperforms MGAN on both quality and diversity of gener-

ated samples. Specifically, the samples generated by MGAN contain

many identical instances. In 5 G case, G 3 and G 4 of MGAN learn

the same category. In 10 G case, G 2 , G 6 and G 8 , G 10 of MGAN also

learn the same category. Also, the synthetic images produced by

one generator in MGAN are basically identical, showing poor di-

versity. For 10 G case of MGO-GAN, G tends to capture the mode
1 
5’; G 2 tends to produce modes ‘1’ and ‘2’; G 5 tends to generate

ode ‘7’. Moreover, the generated figures within the same cate-

ory present different angles and shapes, which shows the diver-

ity. The union of all generated instances covers all categories. The

ame scenario also appears in 5 G case. This is one more strong ev-

dence to show the attractive property of MGO-GAN that multiple

enerators are able to capture diverse modes in a complementary

anner due to the adoption of orthogonal vectors. 

.2. CIFAR10 

We proceed to validate the baselines and our proposed MGO-

AN on CIFAR10 dataset. Similar to MNIST, MGAN and MGO-GAN

dopt 2 generators to produce synthetic instances, and MGO-GAN

till produces generated images at the nadir of orthogonal value

uring training. The orthogonal values are shown in Fig. 8 , and the

enerated images for all models are shown in Fig. 9 . For SN-GAN,

he generated objects take the same color. This can also be seen as

ode collapse. In this case, those images are slight hue into green.

ince the generator of LGAN is made up of encoder-decoder, the

enerated images are blurred, holding the lowest quality among

AN variants. For MGAN, only part of modes in training data

re captured while a lot of modes are missed. Inception scores

36] and FID scores achieved by MGO-GAN and other GAN variants

re reported in Table. 2 . The experimental results further confirm

he significant performance improvement of MGO-GAN over base-

ines. 

.3. CelebA 

Given that each image in CelebA dataset is rectangle, we re-

hape all images to the size 3 × 128 × 128 for conveniently train-

ng networks. Similar to MNIST and CIFAR10 cases, we employ 2

enerators for MGAN and MGO-GAN, and each generator produces

 instances for convenient observation. Moreover, MGO-GAN still

roduces synthetic images at the nadir of orthogonal values which

re shown in Fig. 10 . The generated images for all models are

hown in Fig. 11 , and the FID scores are shown in Table 3 . Still,

ur proposed MGO-GAN outperforms baselines. Although CelebA

ataset has no label, it can still be differentiated with specific char-

cteristics (e.g., rouging lips or not), and these characteristics can

e used to demonstrate the diversity of generated data. 
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Fig. 7. Synthetic images produced by MGO-GAN and MGAN on MNIST. 5 G (10 G ) indicates that 5 (10) generators are employed by MGAN and MGO-GAN. In 5 G (10 G ), each 

row shows the outputs of one generator. 

Fig. 8. The red ellipse indicates the minimal orthogonal value during training on 

CIFAR10 dataset. At the nadir of the orthogonal value, MGO-GAN produces synthetic 

images which are shown in Fig. 9 (e). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. The red ellipse indicates the minimal orthogonal value during training 

on CelebA dataset. At the minimal point, we select the generated image which is 

shown in Fig. 11 (e). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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By comparing MGO-GAN with baselines, we can observe that

he generated images produced by SN-GAN still fall into a spe-

ific color sub-space. In this case, those images take the gray color.

GAN seems like to show different styles of one object. In addi-

ion, the quality of generated images is not satisfactory. In MGO-

AN, the scenario in which different generators learn different in-
ig. 9. Generated images by baselines and MGO-GAN. Similar to MNIST, the first five ro

nother generator for MGAN and MGO-GAN. 
ormation can be clearly observed. For instance, the first genera-

or learned the features of a girl with lipstick (row 1, column 4

nd row 2, column 3) while another generator learned the fea-

ures of a girl with eye-shadow (row3, column4). This case also

mplicates the complementary manner playing an important part
ws show the outputs of one generator and the last five rows show the outputs of 



10 W. Li, L. Fan and Z. Wang et al. / Pattern Recognition 110 (2021) 107646 

Fig. 11. Generated images by baselines and MGO-GAN. In this case, the first two rows show the outputs of one generator and the last two rows show the outputs of another 

generator for MGAN and MGO-GAN. 

Fig. 12. The first generator G 1 focuses on generating synthetic images with lipstick, while the second generator G 2 basically produces images with glasses. 

Table 3 

FID scores of generated data on CelebA. 

Model FID Score 

WGAN [9] 270.666 

SN-GAN [11] 223.719 

LGAN [19] 273.759 

MGAN [13] 446.141 

MGO-GAN 189.188 
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during training. As to WGAN, it does not loyally reflect diversity.

For example, there is no one rouging his/her lips. 

Given each generator in Fig. 11 only producing 8 images and the

salient characteristics contained by generated images may not be

supportive to show that different generators capture different in-

formation, here we encourage each generator producing 50 images

in our proposed MGO-GAN. We utilize the statistics ob ject 
n (here

n = 50 and object refers to salient characteristics within an im-

age) to count such generated images which contain salient char-

acteristics (e.g., lipstick, eyeshadow, beard) captured by one gener-

ator while other generators do not hold. The generated images are

shown in Fig. 12 . From Fig. 12 , we can observe that the first gener-

ator G 1 focuses on generating synthetic faces with lipstick ( lipstick 
n 

= 22%), while the second generator G 2 basically produces faces

with glasses ( glasses 
n = 28%). Moreover, G 1 generates the faces with

double chin (row 3, column 1 and row 5, column 10, dbould chin 
n 

= 4%) and with bangs (row 1, column 3 and column 5 as well as

row 5, column 6, bangs 
n = 6%); G 2 generates the faces with eye-

shadow (row 2, column 10 and row 4, column 8 as well as row

5, column 9, eyeshadow 

n = 6%) and with beard (row 2, column 1, beard 
n 

= 2%). This further demonstrates that the our proposed MGO-GAN

can guide different generators capture different information in a

complementary manner. 

5.4. Discussion 

The crucial point of employing multi-generator to address the

problem of mode collapse is how to prevent generators learn-

ing the same modes. If there is no constraint, the performance
f multi-generator would degenerate to the single generator case,

uch that the mode collapse still exists. In this paper, we propose

 new approach to training multi-generator model to complemen-

ary learn different information of data with orthogonal vectors.

he smaller orthogonal values reflect a lower correlation of infor-

ation between two generators and a greater diversity of infor-

ation between them. To minimize the correlation, we minimize

he orthogonal value along with minimizing the original generator

oss with back-propagation. Afterwards, we integrate the orthog-

nal value with the generator loss to update the corresponding

enerator’s parameters. This results in a model which generates

igher-quality and more diverse objects (See Fig. 6, Table 1, Fig. 7,

ig. 9, Table 2, Fig. 11, Table 3 and Fig. 12 ). In addition, our pro-

osed model can avoid the case of JSD (p r || p G ) = log 2 . This means

hat MGO-GAN can also address the vanishing gradient problem. 

. Conclusion 

In this paper, to deal with the problem of mode collapse, we

ropose the MGO-GAN, which adopts multiple generators to learn

ifferent information of data with orthogonal vectors. To validate

ur proposed model, extensive experiments are conducted using

NIST, CIFAR10 and CelebA datasets. Both empirical and quanti-

ative studies on generated images demonstrate the following ca-

abilities of our proposed MGO-GAN. ( i ), MGO-GAN is capable of

enerating diverse and high quality instances at different resolu-

ions (e.g., 28 × 28 for MNIST and 128 × 128 for CelebA). ( ii ),

ultiple generators of MGO-GAN are able to learn diverse modes

n a complementary way. ( iii ), MGO-GAN outperforms other GAN

ariants in terms of achieving the highest MNIST score and Incep-

ion score and the lowest FID score. 

For the success of MGO-GAN, one factor is the implicit assump-

ion that throughout this work the training data modes are discon-

ected in the mapping space. Therefore, we would be interested

n verifying this assumption in real-world application datasets, and

tudying the topological properties of these datasets in general in

ur future works. Moreover, it is worth to investigate how to make

he discriminator being capable of assessing the diversity of gener-

ted data rather than only estimating the probability that current
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amples were from training dataset or the generator, which would

emain as exciting future paths for research in GAN community. 

eclaration of Competing Interest 

We declare that we have no financial and personal relationships

ith other people or organizations that can inappropriately influ-

nce our work, there is no professional or other personal inter-

st of any nature or kind in any product, service and/or company

hat could be construed as influencing the position presented in,

r the review of, the manuscript entitled, “Tackling Mode Collapse

n Multi-Generator GANs with Orthogonal Vectors”. 

cknowledgment 

This work was supported in part by the National Key R&D Pro-

ram of China (No. 2018YFC16040 0 0 ), and in part by the Science

nd technology project of Guangdong Provincial Tobacco Monopoly

dministration (No. 2019440 0 0 020 0 035 ). 

ppendix A. MGAN becomes the vanilla GAN 

{
K ∑ 

k =1 

πk E x ∼p G k 
log 

πk p G k ∑ K 
j=1 π j p G j 

}

= β

{
K ∑ 

k =1 

πk E x ∼p G k 
log 

πk p G k ∑ K 
j=1 π j p G j 

}

= β

{
−

K ∑ 

k =1 

πk H (p G k ) + H 

(
K ∑ 

j=1 

π j p G j 

)
+ 

K ∑ 

k =1 

πk log πk 

}

here H (p) indicates the Shannon entropy for distribution p , and

he last term of this equation is a constant. If each generator in

GAN learns the homogeneous information, the value of H (p) is

he same. In this way, the difference of first two terms is 0. Thus,

 (G 1: K ) can be rewritten as: 

 (G 1: K ) = J (G, C ∗, D 

∗) 

= E x ∼p data 
log 

p data 

p data + p model 

+ E x ∼p model 
log 

p model 

p data + p model 

− β

{
K ∑ 

k =1 

πk log πk 

}

Since π k log π k is a constant in MGAN, L (G 1: K ) is basically

quivalent to the vanilla GAN loss function under such a scenario. 

ppendix B. Proof of Eq. (7) 

 (G 1: K ) = E x ∼p r (x ) [ log D 

∗(x )] + 

1 

K 

K ∑ 

i =1 

E z∼p z (z) [ log (1 − D 

∗(G i (z)))] 

+ 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) 

= E x ∼p r log 
p r 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

+ 

1 

K 

E x ∼p G 1 
log 

p G 1 + p G 2 + ... + p G K 
K 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

+ . . . + 

1 

K 

E x ∼p G K 
log 

p G 1 + p G 2 + ... + p G K 
K 

p r + 

p G 1 + p G 2 + ... + p G K 

K 
+ 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) 

= 

∫ 
x 

p r log 
p r 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

dx 

+ 

1 

K 

∫ 
x 

p G 1 log 

p G 1 + p G 2 + ... + p G K 
K 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

dx 

+ . . . + 

1 

K 

∫ 
x 

p G K log 

p G 1 + p G 2 + ... + p G K 
K 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

dx 

+ 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) 

= 

∫ 
x 

p r log 
p r 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

+ 

1 

K 

p G 1 log 

p G 1 + p G 2 + ... + p G K 
K 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

+ . . . + 

1 

K 

p G K log 

p G 1 + p G 2 + ... + p G K 
K 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

dx 

+ 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) 

= 

∫ 
x 

p r log 
p r 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

+ 

p G 1 + p G 2 + . . . + p G K 
K 

log 

p G 1 + p G 2 + ... + p G K 
K 

p r + 

p G 1 + p G 2 + ... + p G K 
K 

dx 

+ 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) 

= 

∫ 
x 

p r log 
p r 

p r + 
p G 1 

+ p G 2 + ... + p G K 
K 

2 

+ 

p G 1 + p G 2 + . . . + p G K 
K 

log 

p G 1 + p G 2 + ... + p G K 
K 

p r + 
p G 1 

+ p G 2 + ... + p G K 
K 

2 

− 2 log 2 + 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) 

≈ − 2 log 2 + 2 JSD (p r || p G 1 + p G 2 + . . . + p G K 
K 

) 

+ 

1 

2 

∑ 

i � = j 
λO(E(G i (z)) , E(G j (z))) 

here O(E(G i (z)) , E(G j (z))) = 

∣∣∣ E(G i (z)) ∗E(G j (z)) 

| E(G i (z)) |∗| E(G j (z)) | 
∣∣∣, i � = j and

 ≤ i � = j ≤ K . O(E(G i (z)) , E(G j (z))) is minimized along with

inimizing the original generator loss, and this is achieved

y training the criterion with back-propagation through

 θ

(
1 
K log (1 − D (G i θ

(z))) + O(E (G i θ
(z)) , E (G j θ

(z))) 
)

in a similar 

ay as vanilla GAN, j ∈ 1: K and j � = i . With the epochs increase, G i 

radually hold the information which other generators less hold,

nd this is implicitly reflected by O(E(G i (z)) , E(G j (z))) , j ∈ 1 : K 

nd j � = i , i.e., the value of O(E(G i (z)) , E(G j (z))) becomes smaller.

ssuming generator G i finally holds such an information while

ther generators do not learn, the value of O(E(G i (z)) , E(G j (z))) is

mallest. Here, we term such a smallest value as δ. Thus, V ( G 1: K )

an be rewritten as: 

V (G 1: K ) = −2 log 2 + 2 JSD (p r || p G 1 + p G 2 + ... + p G K ) + δ

https://doi.org/10.13039/501100013290
https://doi.org/10.13039/501100012245
https://doi.org/10.13039/501100011359
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