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Post-classification with multi-temporal remote sensing images is one of the most popular change detection
methods, providing the detailed “from-to” change information in real applications. However, due to the fact
that it neglects the temporal correlation between corresponding pixels in multi-temporal images, the post-
classification approach usually suffers from an accumulation of misclassification errors. In order to solve this
problem, previous studies have separated the change and non-change candidates with change vector analysis,
and they have only updated the classes of the changed pixelswith the post-classification; however, this approach
with thresholding loses the continuous change intensity information, where larger values indicate higher prob-
ability to be changed. Therefore, in this paper, a new post-classification method with iterative slow feature anal-
ysis (ISFA) and Bayesian soft fusion is proposed to obtain reliable and accurate change detection maps. The
proposed method consists of three main steps: 1) independent classification is implemented to obtain the
class probability for each image; 2) the ISFA algorithm is used to obtain the continuous change probability
map of multi-temporal images, where the value of each pixel indicates the probability to be changed; and
3) based on Bayesian theory, the a posteriori probabilities for the class combinations of coupled pixels are calcu-
lated to integrate the class probability with the change probability, which is named as Bayesian soft fusion. The
class combination with the maximum a posteriori probability is then determined as the change detection result.
In addition, a class probability filter is proposed to avoid the false alarms caused by the spectral variation within
the same class. Two experiments with multi-temporal Landsat ThematicMapper (TM) images indicated that the
proposedmethod achieves a clearly higher change detection accuracy than the current state-of-the-artmethods.
The proposed method based on Bayesian theory and ISFA was also verified to have the ability to improve the
change detection rate and reduce the false alarms at the same time. Given its effectiveness andflexibility, the pro-
posed method could be widely applied in land-use/land-cover change detection and monitoring at a large scale.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Land-use/land-cover (LULC) change detection is an important factor
in the dynamic study of ecosystems and city development (Coppin et al.,
2004). The locations and the “from-to” types of LULC changes can pro-
vide valuable information for environmental change and urban expan-
sion monitoring (Bindschadler et al., 2010; Huang et al., 2016; Nielsen
et al., 2008; Tang and Zhang, 2017; Xian and Homer, 2010; Yang et al.,
2012). Timely and accurate LULC change detection is also important
for a better understanding of the interactions between human activity
and natural phenomena (Fu and Weng, 2016; Lu et al., 2004; Zhao
et al., 2011; Zillmann et al., 2014).
Due to its large-scale view and long-period observation, remote
sensing has been the primary data source for LULC change detection
(Kennedy et al., 2009; Song et al., 2014; Yao et al., 2016; Zhang and
Zhang, 2007; Zillmann et al., 2014). Numerousmethods have addressed
change detection using multi-temporal remote sensing data, including
image algebra (Bovolo and Bruzzone, 2007; Chen et al., 2003), image
transformation (Canty and Nielsen, 2008; Celik, 2009; Nielsen, 2007),
and classification-based methods (Hussain et al., 2013; Singh, 1989).
Among them, classification-based methods can provide the detailed
“from-to” change type information in the study area, and have thus
been widely applied in LULC change detection (Chen et al., 2012;
Coppin et al., 2004; Hussain et al., 2013; Lu et al., 2004; Xian et al.,
2009; Yuan et al., 2005).

There are two main types of methods in classification-based change
detection: multi-date classification methods and post-classification
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methods (Hu and Zhang, 2013; Huang et al., 2010; Singh, 1989). Multi-
date classification regards each “from-to” change type as one separate
class, and performs a direct classification for the stacked data
(Nemmour and Chibani, 2006). However, it may be difficult to obtain
enough high-quality training samples for all the possible change types
(Huang et al., 2010). Therefore, the post-classification methods, which
compare the class maps from independent classification, are more pop-
ular in practical applications, (Ahlqvist, 2008; Serra et al., 2003; Yuan
et al., 2005). The disadvantage of the post-classification methods is
that they neglect the correlation information of the corresponding land-
scapes frommulti-temporal images, and thus suffer from an accumula-
tion of misclassification errors (Singh, 1989). From the perspective of
change type identification, the misclassification in one image will lead
to errors in the “from-to” change map, no matter whether or not the
corresponding pixels in the other image are correctly classified (Singh,
1989). From the perspective of change/non-change detection, pixels
with the same spectral features may be detected as changes due to the
classification hyperplane variations in the multi-temporal images.
Therefore, for the purpose of obtaining a better performance, integrat-
ing temporal correlation with independent classifications is a feasible
and effective way to improve a post-classification method (Cardille
and Fortin, 2016; Xian et al., 2009).

In a previous study, Xian et al. (2009) proposed an updated post-
classificationmethod based on a “hard fusion” approach, with the inde-
pendent classification and change intensity obtained by change vector
analysis (CVA). CVA is first implemented to separate the change and
non-change candidate areas. For the unchanged areas, the landscape is
assigned as the same class as that in the previousmap, and the changed
areas follow the independent classification (Xian and Homer, 2010).
This straightforward approach can provide the opportunity to maintain
the consistency of landscapes, and has been demonstrated to be effec-
tive in reducing false alarms (Yu et al., 2016). However, there are two
problems with this method: 1) it is not easy to automatically and accu-
rately determine the threshold to identify non-changes in previous
works (Xian and Homer, 2010; Xian et al., 2009; Yu et al., 2016); 2) it
is a hard fusion method, because it neglects the continuous probability
information from the change intensity map. The hard fusion method
generates the binary map for change and non-change candidates by
thresholding, while the continuous change intensity information,
where larger values indicate higher probabilities to be changed, is lost
in the process of binarization.

In this paper, in order to solve the aforementioned problems, we
present a new post-classification change detection method with itera-
tive slow feature analysis (ISFA) and Bayesian soft fusion for multi-
temporalmultispectral remote sensing data. After the class probabilities
of corresponding pixels inmulti-temporal images are obtained by inde-
pendent classification, the continuous probabilities of pixel pairs to be
changed are calculated by ISFA algorithm. And then, instead of deter-
mining the class labels of pixel pairs independently, we proposed a
novel Bayesian soft fusion method to find their optimal class combina-
tions fusing the class probabilities and the change probabilities. The
class combination with the same label will be more preferred with
low change probability, and vice versa. In this way, the continuous
change probability without thresholding is utilized to avoid error accu-
mulation. The coupled class labels in multi-temporal images will be de-
termined accurately by integrating the class probabilities from
independent classification and the change probabilities from change
detection.

Therefore, the proposed approach consists of threemain parts: 1) in-
dependent classification is performed to obtain the class probability;
2) the ISFA algorithm is used to obtain the change probability for each
pixel; and 3) based on Bayesian theory, the a posteriori probabilities
for the class combinations of coupled pixels from the multi-temporal
images are calculated with the class probability and the change proba-
bility. The class combination with the maximum a posteriori probability
is then determined as the final result. In addition, a class probability
filter is proposed to avoid the false alarms caused by the spectral varia-
tion within the same class. We tested the proposed method using two
multi-temporal Landsat TM datasets covering two cities in China,
where obvious urban expansion had occurred over the time period.

The rest of this paper is organized as follows. Section 2 gives a brief
description of the study areas and the data. Section 3 details the pro-
posed method. The experimental results and discussion are presented
in Sections 4 and 5. Finally, we draw our conclusion in Section 6.

2. Study areas and data description

The experiments involved two datasets of multi-temporal TM im-
ages acquired by Landsat 5, as shown in Fig. 1. The images contain six
spectral bands, with a spatial resolution of 30 m. The first two multi-
temporal images were collected on 2000/05/03 and 2002/07/12, cover-
ing the developed and newly developing regions of the city of Nanjing,
Jiangsu Province, China. The second dataset was collected on 2007/07/
26 and 2010/08/19, located in the region of the city of Maanshan,
Anhui Province, China. The image sizes are both 800 × 800. During the
time periods, both Nanjing and Maanshan experienced a dramatic
change from agricultural to urban land use in their suburban areas.
Therefore, these two study areas are suitable to evaluate the perfor-
mance of the proposed method.

Themulti-temporal datasets were provided by the International Sci-
entific & Technical Data Mirror Site of the Computer Network Informa-
tion Center directed by the Chinese Academy of Sciences (http://www.
gscloud.cn). The datasets are the L1 T standard data product, which is
processed by systematic radiometric correction and geometric correc-
tion with ground control points (GCPs) and a digital elevation model
(DEM). We categorized the landscapes in the study areas into four
land-cover classes: city, soil, vegetation, andwater. For the classification
training, we selected 37 samples for city, 17 samples for soil, 34 samples
for vegetation, and 30 samples for water in the multi-temporal images
of Nanjing; and 66 samples for city, 36 samples for soil, 61 samples for
vegetation, and 65 samples for water in the multi-temporal images of
Maanshan. In each dataset, the training samples, which differ from the
test samples, are selected from the unchanged pixels with the same
class label inmulti-temporal images, thus used in the independent clas-
sification of each image. Actually, the training samples for the proposed
method can be selected independently, since the continuous change
probabilities are obtained by unsupervisedmethod. The reason to select
unchanged samples is to facilitate the comparison between the pro-
posed method and the state-of-the-art supervised method in the fol-
lowing experiments. For the quantitative assessment, we chose 14,756
samples from the Nanjing TM dataset and 9641 samples from the
Maanshan TM dataset for evaluation by careful visual interpretation.
The reference sample distributions for these two datasets are listed in
Appendix A.

3. Methodology

The flowchart of the proposed method is shown in Fig. 2. The meth-
od consists of three steps: 1) independent classification is performed for
each multispectral image to obtain the class probability; 2) the ISFA
change detection algorithm is employed to obtain the change probabil-
ity of each pixel; 3) the a posteriori probabilities of the coupled class
combinations are calculated with the class probability and the change
probability according to Bayesian soft fusion; 4) with the class probabil-
ity filter, the definitely classified pixel pairs will be labeled only by their
class probabilities, and the class combinations of the others will be de-
termined by the Bayesian soft fusion. The details are as follows.

3.1. Classification

Themulti-temporalmultispectral images are first classified to obtain
the class probability of each pixel. In this study, support vector machine

http://www.gscloud.cn
http://www.gscloud.cn


Fig. 1. Study areas and datasets used in this paper: (a) the study areas and their locations; (b)–(c) the pseudo-color images acquired in 2000 and 2002 in the study area of Nanjing; and
(d)–(e) the pseudo-color images acquired in 2007 and 2010 in the study area of Maanshan.
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Fig. 2. Flowchart of the post-classification change detection method with ISFA and Bayesian soft fusion.
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(SVM) is used as the classification method, since it is robust to small
numbers of training samples and can obtain a very good performance.
LIBSVM is used for the implementation of the classification (Chang
and Lin, 2011). After the classification, the probabilities of all the pixels
for each landscape class in the multi-temporal images are obtained for
use in the following process.
3.2. Iterative slow feature analysis

In order to fusing the temporal information in the proposed Bayesian
soft fusion, the change probability should be obtained to measure the
probability of a pixel pair to be changed during the interval. In this
paper, an effective unsupervised change detection, which is iterative
slow feature analysis (ISFA), is utilized for the accurate change probabil-
ity map of multi-temporal images (Wu et al., 2014).

In practical applications, the observed signals from sensors are sen-
sitive to small environmental changes, and thus vary greatly over
time. However, for the observed targets, they usually have common
structures during the observation period, and show statistical regulari-
ties in the original signals (Lin et al., 2014). Therefore, their high-level
representation extracted from the temporal remote sensing datamostly
changes very slowly (Berkes, 2005; Berkes and Wiskott, 2005; Wilbert
et al., 2011). Slow feature analysis (SFA) was thus proposed to discover
the underlying essential pattern from the original input data (Wiskott
and Sejnowski, 2002; Zhang and Tao, 2012).

In 2014, Wu et al. (2014) improved the SFA algorithm to solve the
problem of change detection in multi-temporal remote sensing images.
The environmental changes caused by the different acquisition times re-
sult in spectral variance in multi-temporal remote sensing images,
which leads to pseudo-changes and reduces the accuracy of the change
detection. Therefore, SFA was reformulated for the discrete case to ex-
tract the temporally invariant features, where the spectral variance is
suppressed and the real changes are highlighted (Wu et al., 2014; Wu
et al., 2015; Zhang et al., 2014).

Mathematically, SFA change detectionmethods can be defined as an
optimization problem. For multi-temporal images, xi and yi indicate the
spectral feature vectors of the correspondingpixels in the same location,
where xi=[xi ,1,xi ,2,⋯ ,xi ,b]T, xi ,b is the band value of sample i in band b.
Wewant to find a set of transformation vectorswj, such that the optimi-

zation objective min
wj

1
n
∑
n

i¼1
ðwT

j x̂i−wT
j ŷiÞ

2

will be fulfilled (Wu et al.,

2014), where x̂ and ŷ are the normalized spectral vectors with zero
mean and unit variance, and n is the number of samples. The optimiza-
tion problem needs to be solved under three constraints: zero mean,
unit variance, and uncorrelated variables (Wu et al., 2014).

SFA aims to minimize the variance of the unchanged landscapes so
as to highlight the real changes. If all the pixels in the remote sensing
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image are used for SFA learning, the changed pixels will obviously af-
fect the determination of the feature space. One way to solve this
problem is to utilize training samples for the learning; however, in
this case, the performance will be influenced by the manual selec-
tion. Therefore, the ISFA algorithm was proposed to replace the
training samples with iteratively assigned weights (Wu et al.,
2014; Zhang et al., 2014).

The basic idea of ISFA is to assign large weights to unchanged pixels
in the image so that they play a bigger role in feature extraction over the
iteration. Before the iteration, unit weights are assigned to all the pixels.
In the next iteration, the weights will affect every calculation process.
The input data of the multi-temporal images are normalized with the
weights (Wu et al., 2014). After the normalized features are obtained,
the optimization problem of SFA can be solved by a generalized eigen-
value problem AW ¼ BW, where W is the transformation matrix, A is
the weighted covariance matrix of the difference image, and B is the
mean of the two weighted covariance matrices of each image (Wu
et al., 2014).

The output features are sorted according to the ascending order of
the eigenvalues,where the featureswith the lowest variance are ranked
first. Finally, the changed pixels will have a high separability with the
unchanged background in the difference image of the transformed fea-

tures as SFAi; j ¼ ŵT
j x̂i−ŵT

j ŷi.
After the transformed features are obtained, the weights are deter-

mined according to the chi-squared distribution (Wu et al., 2014). Ac-
cording to SFA theory, the differences of the transformed features for
unchanged pixels are normally distributed and independent, and thus
their squared sumwill follow anχ2 distribution with N degrees of free-
dom (Lancaster and Seneta, 2005). In each iteration, the weight of each
pixel can be assigned as the probability of being unchanged
p=P{χ2(N)NT}, where T is the chi-squared distance and calculated
with the transformed features (Wu et al., 2014).

Pixels with a small chi-squared distance will have a high probability
of being unchanged, and thus they will be assigned large weights in the
learning of the invariant feature space. Due to the distribution, the
weightswill be limited to the range of [0,1]. In the next iteration, the up-
datedweightswill be assigned to all the pixels andwill affect the feature
learning.

The iteration continues until the stopping criterion is met. The stop-
ping criterion of ISFA is that the maximum difference between the ei-
genvalues of the current iteration and the last iteration is smaller than
a given threshold.

When the iteration converges, the change probability of every pixel
in the image can be obtained accurately by pc = 1 − p, where p is the
probability of being unchanged.

3.3. Bayesian soft fusion

In multi-temporal remote sensing images, let us consider a corre-
sponding pixel pair x and y, where wi and vj are their class labels (i =
1,…,m1, and j=1,…,m2). In traditional post-classification change de-
tection, the objective is to determine the optimalwi and vj for the corre-
sponding pixels according to their spectral features x and y, andwe then
compare the class labels to obtain the “from-to” change information.
However, due to the fact that the post-classification methods neglect
the temporal correlation, they suffer from an accumulation of misclassi-
fication errors.

If we assume that the coupled class labels of the multi-temporal
pixels are temporally correlated, then the optimal multi-temporal clas-
sification can be given by Bayesian theory as: find the coupled class
combination (wi, vj) that provides themaximum a posteriori probability
for the multi-temporal features x and y (Bruzzone and Serpico, 1997):

max
wi ;v j

P wi; vjjx; y
� �� � ð1Þ
with Bayesian theory, the a posteriori probability can be reformulated
as:

max
wi ;v j

P x; yjwi; vj
� �

P wi; vj
� �

P x; yð Þ
� �

⇒ max
wi ;v j

P x; yjwi; vj
� �

P wijvj
� �

P vj
� �

P x; yð Þ
� � ð2Þ

P(x, y) is independent of wi, vj, and thus it makes no contribution to
the determination of the class combination and can be ignored. Let us
assume that the probability distribution of spectral feature x only de-
pends on its class in the multispectral image at one time. Thus, we can
write:

P x; yjwi; vj
� � ¼ P xjwið ÞP yjvj

� � ð3Þ

Therefore, by combining Eqs. (2) and (3), we obtain the following
formulation of the a posteriori probability:

max
wi ;v j

P xjwið ÞP yjvj
� �

P wijvj
� �

P vj
� �� �

⇒ max
wi ;v j

P wijxð ÞP xð Þ
P wið Þ � P vjjy

� �
P yð Þ

P vj
� � � P wijvj

� �
P vj
� �( ) ð4Þ

P(x) and P(y) are also independent of their classes, and we can as-
sume that the a priori probabilities P(wi) of each landscape class are
equal in one image. Therefore, the final decision rule is obtained as fol-
lows:

max
wi ;v j

P wijxð ÞP vjjy
� �

P wijvj
� �� � ð5Þ

where P(wi |x) and P(vj |y) are the two conditional probabilities from
the independent classification, and P(wi | vj) is the transition probability,
which is estimated by the change probability as:

P wijvj
� � ¼ 1−pc if wi ¼ vj

pc if wi≠vj

�
ð6Þ

where pc is the probability of being changed, which can be obtained by
ISFA proposed in Section 3.3.

In summary, firstly, the class probabilities P(wi | x) and P(vj | y) are
obtained by independent classification, and the change probability
P(wi | vj) is calculated by ISFA. The a posteriori probabilities (Eq. (5))
for all possible combinations (wi, vj) are then calculated. Finally, the
coupled class combination with the maximum a posteriori probability
is determined as the result of the change detection in the multi-
temporal remote sensing images. The proposed process integrating
the class probabilitywith the change probability is referred to as “Bayes-
ian soft fusion”.

3.4. Class probability filter

It is worth noting that there is a problem in the proposed Bayesian
soft fusion strategy. When the a posteriori probability is calculated,
the landscapes with high change probabilities are more likely to be
determined as changes. However, in real applications, some regions
with the same class will show very different spectral features at dif-
ferent times (e.g., water areas). The Bayesian soft fusion may lead to
some false alarms for unchanged pixels compared to the original
method. Therefore, we also propose a class probability filter to
avoid such errors.

The class probability filter is that, if the class probabilities of the cor-
responding pixels in multi-temporal images are both larger than a
threshold, such as 0.7, their class labels are only determined according
to their class probabilities obtained from the independent classifica-
tions. And for the other pixel pairs, the class combinations will be
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determined by the proposed Bayesian soft fusion. The class probability
filter can be expressed as follows:

wi; vj
� � ¼

max
wi ;v j

P wijxð Þ; P vjjy
� �� �

; if P wijxð ÞN f&P vjjy
� �

N f
max
wi ;v j

P wijxð ÞP vjjy
� �

P wijvj
� �� �

; else

8>>>><
>>>>:

ð7Þ

where f indicates the class probability filter.
The basic idea is, if the class probabilities are both very high,

the independent classification is definite, and it is not necessary
to integrate the change probability to determine the classes for
the multi-temporal pixels. The use of class probability filter differs
in several ways from hard fusion with a threshold for change in-
tensity. In hard fusion methods, the threshold is applied to the
change intensities by interpreting temporal correlation to sepa-
rate change and non-change candidates; while in the proposed
soft fusion method, the probability threshold is applied to the
class probabilities from independent classifications to exclude
the definitely classified pixels. The filter setting is evaluated in
the experimental part.

3.5. Comparative methods

Hard fusion with CVA is a widely used improved post-
classification change detection method for updating LULC maps
from multi-temporal remote sensing images (Xian and Homer,
2010; Xian et al., 2009; Yu et al., 2016), and is thus used here as
a comparison method. Firstly, CVA is applied to obtain the change
intensity, and a threshold is determined to identify the change
and non-change candidates. In previous studies, μ+aσ was used
as the criterion, and the parameter a was not determined auto-
matically (Yu et al., 2016). Therefore, in order to avoid the influ-
ence of manual interpretation, we use Otsu's thresholding
algorithm to segment the change map (Otsu, 1975; Wu et al.,
2015). The changed areas are then obtained from the original
post-classification method, and the classes of the unchanged
areas are determined by the maximum class probability from the
two independent classifications.

For the soft fusion approach, in addition to ISFA, supervised SFA
(SSFA) without iteration (Wu et al., 2014) and iteratively
reweighted multivariate alteration detection (IRMAD) (Nielsen,
2007) can also provide change probability information. For SSFA,
the training samples were the same as those used in the indepen-
dent classification. For the hard fusion approach, besides CVA, ISFA,
SSFA, and IRMAD could also be utilized to obtain the change map.
In the experiments, we compared and analyzed the proposed soft
fusion method and the hard fusion approach in change detection
performance.

3.6. Accuracy assessment

We conducted the accuracy assessment in several ways, to ensure
a comprehensive evaluation. The change detection problem was
regarded as a binary classification problem for change and non-
change, and kappa coefficients were calculated to avoid the unbal-
anced test samples. The “from-to” transition type was then regarded
as one class for the evaluation. The classification accuracies obtained
by the proposed method for each image were also evaluated. Finally,
the detection rate (DR) and false alarm rate (FAR) were determined
for a detailed analysis. Since different methods may focus on differ-
ent kinds of improvement in DR or FAR, the F-score, which
has been widely used in pattern recognition, was utilized for com-
prehensive evaluation through the fusion of DR and FAR (Goutte
and Gaussier, 2005; Sokolova et al., 2006; Wang et al., 2015). The
F-score with the balance of DR and FAR was calculated to measure
the ability of the change detection as follows:

F‐score ¼ 2� DR� RR
DRþ RR

ð8Þ

where the recall rate (RR) is equal to 1 − FAR.

4. Experiments

4.1. Nanjing TM dataset

The change detection results for change/non-change and the “from-
to” change type are shown in Fig. 3. Fig. 3 (a) and (b) show the results of
the traditional post-classification method and the proposed method
with a class filter of 0.7 (which is the parameter setting that obtains
the best performance). It can be observed that the proposedmethod ob-
tains fewer changes than the traditional post-classificationmethod (e.g.,
in the subset areas of (c)–(k)). From Fig. 3 (d), it can be seen that the de-
tected changes in south of the lake in the city areas are removed by the
proposed method. Visually, most of the removed changes are false
alarms, since the city area didn't show so many changes in Fig. 3 (c).
This is also shown by Fig. 3 (e), where most of the removed changes
are from city to vegetation, that are impossible in practice. Fig. 3
(f)–(h) show that the road is falsely detected by the traditional method,
which can be corrected by fusing the change probability information.
Fig. 3 (i)–(k) show that the obvious city expansion areas are both de-
tected by the twomethods. The quantitative assessments for the perfor-
mances of change detection between the traditional post-classification
method and the proposed method can be seen in Appendix B.

Fig. 4 shows the results for the “from-to” change type, where it can
be seen that the city expansion led to obvious land-cover transitions
in the Jiangning region, the south part of Nanjing. The land-cover chang-
es mainly consist of vegetation areas changing into city areas or soil
areas ready for development. In Fig. 4 (a), the traditional post-
classification method obtains numerous false alarms, showing changes
from city to vegetation in the center of the city of Nanjing, which is al-
most impossible in a real case. Comparatively speaking, the result ob-
tained by the proposed method in (b) shows a much better
performance in suppressing the false alarms.

In order to compare the proposed method with other state-of-the-
art methods, the accuracies obtained by the different methods are sum-
marized in Table 1. In Table 1, “soft fusion”means that the change prob-
ability and the independent classification are fused based on the
proposed approach, as described in Section 3.3. In addition to ISFA,
SSFA and IRMAD can also provide change probability information for
the Bayesian soft fusion. “Hard fusion” in Table 1 indicates the fusion
approach described in Section 3.5, which is widely used to improve
the performance of post-classification (Xian et al., 2009). Apart from
the traditional CVA method, ISFA, SSFA, and IRMAD can also obtain a
change map with Otsu's thresholding algorithm. Besides automatic
thresholding with Otsu algorithm, μ+1.5σ, which is manually set as
the threshold according to (Yu et al., 2016), was used for hard fusion
with CVA (CVA-std) and evaluated in Table 1. The threshold for the
class probability filter in Table 1 results in the best change detection ac-
curacy for eachmethod. The highest accuracy is highlighted in bold, and
the second highest accuracy is denoted by underlining. In Table 1,
“Kappa1” and “Kappa2” are the kappa coefficients for the two multi-
temporal image classifications, and “cdKappa” and “trKappa” illustrate
the accuracy for change/non-change and the “from-to” transition.
“DR” and “FAR” represent the detection rate and false alarm rate,
where the F-score is a comprehensive indicator of their performance.

It can be observed in Table 1 that all the improvedmethods have the
ability to increase the accuracies for change detection and the “from-to”
change type identification over the result obtained by the traditional
post-classification method. The quantitative evaluation demonstrates



Fig. 3. Change detection results for change/non-change: (a) and (b) are the change detection results of the traditional post-classification method and the proposed method; (c), (f), and
(i) are subset areas of the multi-temporal remote sensing images from 2000 and 2002; (d), (g), and (j) are the corresponding subset areas of the change detection results; (e), (h), and
(k) are the corresponding subset areas of the “from-to” change type, where the different colors indicate different change types. The legends of colors are shown in Fig. 4.
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that the proposedmethod can perform significantly better than the tra-
ditional post-classificationmethod. Although all the improvedmethods
show a slight decrease in classification accuracy for remote sensing
image 1, they show a great improvement in the classification map for
image 2. Compared with the manual threshold, hard fusion with auto-
matic Otsu's thresholding algorithm shows higher accuracies in all
cases in Table 1. It demonstrates that Otsu's thresholding method is
very effective, and has the ability to replace the manual threshold in
hard fusion methods. Among all the methods, the proposed method
with ISFA and Bayesian soft fusion obtains the highest change detection
accuracy of 0.850, and the third highest accuracy of 0.828 for land-cover
transition. The proposed method also shows themaximumDR of 93.7%
Fig. 4. Change detection results for the “from-to” change type by: (a) the traditional post-clas
different change types.
and a comparatively low FAR of 17.8%, which are both better than those
obtained by the traditional post-classification method. According to the
F-score, the proposed method is superior to all the other methods. The
quantitative evaluation of the performances with different thresholds
of class probability filter can be seen in Appendix C.

4.2. Maanshan TM dataset

Fig. 5 shows the change detection results for the Maanshan TM
dataset, where it can be seen that, compared with the traditional post-
classification method, the proposed method obtains fewer changed re-
gions. From the subsets shown in Fig. 5 (c)–(k), it can be seen that the
sification method; and (b) the proposed method, where the different colors indicate the



Table 1
Accuracy assessment for change detection and “from-to” transition identification.

Method Thresh. Kappa1 Kappa2 cdKappa trKappa DR FAR F-score

Post 0.897 0.816 0.631 0.786 0.883 0.417 0.703
Soft fusion ISFA 0.7 0.872 0.861 0.850 0.828 0.937 0.178 0.876

SSFA 0.5 0.885 0.833 0.705 0.798 0.928 0.356 0.760
IRMAD 0.5 0.892 0.809 0.624 0.777 0.928 0.439 0.699

Hard fusion ISFA 0.5 0.877 0.860 0.764 0.821 0.815 0.209 0.802
SSFA 0.6 0.870 0.865 0.764 0.822 0.751 0.146 0.799
IRMAD 0.6 0.873 0.866 0.782 0.825 0.777 0.143 0.815
CVA 0.7 0.879 0.866 0.822 0.833 0.833 0.132 0.850
CVA-std 0.6 0.876 0.865 0.799 0.829 0.805 0.143 0.831
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city expansion is effectively detected by both methods. It is worth not-
ing that the spectral feature of the triangular water region in Fig. 5
(i) changed very obviously, and it is correctly determined as non-
change by the proposed method. This demonstrates that the proposed
approachwith the class probability filter has the ability to avoid inaccu-
rate detection caused by spectral variation. The quantitative assess-
ments for the performances of change detection between the
traditional post-classification method and the proposed method can
be seen in Appendix B.

Fig. 6 shows the “from-to” change detection results for this dataset.
Visually, the proposed method performs well in detecting the city ex-
pansion. There are also fewer detected changes in the image obtained
by the proposed method than in the image obtained by the traditional
post-classification method.

The maximum accuracy of the change detection for each method
(Table 2) shows that the proposed method with ISFA and Bayesian
soft fusion obtains the highest kappa coefficients for the change detec-
tion (0.8800) and the “from-to” transition identification (0.884). In
the comprehensive evaluation with the F-score, the proposed method
also shows an obvious improvement from 0.842 to 0.902, which is the
Fig. 5. Change detection results for change/non-change: (a) and (b) are the change detection r
(i) are subset areas of the multi-temporal remote sensing images from 2007 and 2010; (d), (g
(k) are the corresponding subset areas of the “from-to” change type, where the different color
highest among all the methods. What needs special attention is that, al-
though the proposed method only obtains a slight increase in the accu-
racies of the independent classification, it shows a great improvement
for change detection. It can be found that CVAwith automatic threshold
gets better performances in almost all accuracies than that withmanual
threshold for hard fusion, thus Otsu's thresholding is recommended in
hard fusion. For the quantitative assessment of the performances with
different thresholds of class probability filter, please refer toAppendix C.

5. Discussion

5.1. Improvement over traditional methods

The comparison between the proposed method and the traditional
post-classification method indicates that the proposed method with
ISFA and Bayesian soft fusion is superior to the direct comparison of in-
dependent classification. As we discussed in Section 1, the traditional
post-classification method suffers from an accumulation of misclassifi-
cation errors, which show as the large number of false alarms in the
change detection result (Singh, 1989). This is because the unchanged
esults of the traditional post-classification method and the proposed method; (c), (f), and
), and (j) are the corresponding subset areas of the change detection results; (e), (h), and
s indicate different change types. The legends of colors are shown in Fig. 6.



Fig. 6. Change detection results for the “from-to” change type obtained by: (a) the traditional post-classificationmethod; and (b) the proposedmethod,where the different colors indicate
the different change types.
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landscapes with the same spectral features may be detected as changes
by the traditional post-classification method, due to the variation of the
classification boundaries in the multi-temporal images. Therefore, the
change information should be taken into consideration to avoid this
problem. This can be seen in the experimental results. Taking the Nan-
jing TM dataset as an example, there are numerous changes from city
to vegetation in the center of the city in the result of the traditional
post-classificationmethod (Fig. 3 (a) and Fig. 4 (a)), which is almost im-
possible in reality. As we analyzed above, most of these false alarms are
the result of misclassification. Comparatively speaking, the false alarms
are effectively suppressed in the results of the proposedmethod shown
in Fig. 3 (b) and Fig. 4 (b). In the quantitative evaluation (Table 1), the
proposed method shows a decrease in FAR from 0.4169 to 0.1779 and
an increase in DR from 0.8832 to 0.9365 at the same time. The improve-
ment can also be seen in the Maanshan TM dataset.

In order to solve theproblem inusing the post-classificationmethod,
hard fusion has been widely used for updating LULC maps from multi-
temporal images (Xian and Homer, 2010; Xian et al., 2009; Yu et al.,
2016). According to our experiments, this approach using CVA is also
very effective, obtaining the second highest accuracy for change/non-
change and the maximum accuracy for the “from-to” change type in
Table 1. The basic idea of hard fusion is to avoid false alarms in un-
changed candidates, and thus it shows the lowest FAR in Table 1 (Yu
et al., 2016). However, since hard fusion approach limits the unchanged
candidates to belonging to the same class, the DR is also decreased com-
pared with the traditional method, which can be observed from the ac-
curacies by all the methods with hard fusion in Table 1. Comparatively,
this paper proposes Bayesian soft fusion taking advantage of continuous
change probability. As shown in Table 1, methods with soft fusion tend
to obtain higher DR, while their FARs are mostly higher than those of
hard fusion.With the change probability providedby ISFA, the proposed
Table 2
Accuracy assessment for the change detection and the “from-to” transition identification.

Method Thresh. Kappa1 Kappa2

Post 0.929 0.897
Soft fusion ISFA 0.7 0.930 0.898

SSFA 0.6 0.925 0.895
IRMAD 0.5 0.926 0.896

Hard fusion ISFA 0.5 0.926 0.888
SSFA 0.6 0.925 0.887
IRMAD 0.5 0.926 0.888
CVA 0.7 0.924 0.890
CVA-std 0.5 0.926 0.889
method increases theDR aswell as decreasing the FAR, and thus obtains
the highest F-score in the comprehensive evaluation (Table 1).

The difference between hard fusion and soft fusion based on Bayes-
ian theory can also be observed in Fig. C1 in Appendix C. Fig. C1 (c) and
(d) show the DR and FAR of these methods with different thresholds.
Compared with the DR and FAR obtained by the traditional post-
classification method (indicated by the horizontal dashed line), all the
methods with soft fusion show an obvious improvement in DR, while
most of them show a higher FAR at the same time. For the cases of
hard fusion, the improved methods obtain significantly lower FARs,
while obtaining lower DRs at the same time. This can also be seen in
Fig. C2 (c) and (d) in Appendix C.

Therefore, we can conclude that, as improvements of the traditional
post-classification approach, hard fusion tends to suppress the false
alarms in change detection, while soft fusion improves the detection
rate of changed areas. If the change probability is accurate enough,
such as the result of ISFA, the soft fusion method is capable of reducing
the FAR at the same time, as shown in Fig. C1 and Fig. C2. This is the rea-
son why the proposed method with ISFA and Bayesian soft fusion ob-
tains the highest F-score for change detection evaluation.

5.2. Effect of the class probability filter

In this paper, we propose a filter for the class probability obtained by
the independent classification. If the class probabilities in the multi-
temporal images are both higher than a pre-defined threshold, their
class labels will not be corrected by the soft fusion. The motivation for
this procedure is that some landscapes with the same class show ex-
tremely different spectral signatures at different times. For example, vi-
sually, the spectral feature of the water region in the center of Fig. 7
(a) and (b) changes a lot, whereas it belongs to the water class in both
cdKappa trKappa DR FAR F-score

0.804 0.873 0.931 0.231 0.842
0.880 0.884 0.955 0.145 0.902
0.833 0.872 0.963 0.214 0.866
0.783 0.867 0.947 0.267 0.826
0.785 0.867 0.843 0.194 0.824
0.798 0.868 0.803 0.137 0.832
0.785 0.867 0.843 0.194 0.824
0.849 0.874 0.859 0.108 0.875
0.786 0.868 0.850 0.199 0.825



Fig. 7. The effect of the class probability filter: (a) and (b) are subsets of theMaanshan TM dataset; (c) shows the result of the proposedmethodwithout filter; and (d) shows the result of
the proposed method with the threshold of 0.7.
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images. With the proposed method, it will obtain a very high change
probability, and will be more likely to be categorized into different clas-
seswith the a posteriori probability, as shown in Fig. 7 (c). Therefore, we
utilize a filter for the class probability so that the class labels of the cor-
responding pixels are not influenced by the change probability when
the independent classifications are both definite. With the threshold
of 0.7, the false alarms in the water region are avoided, as shown in
Fig. 7 (d).

This can also be seen in Fig. C2 in Appendix C, where the threshold of
1 indicates that themethod is employedwithout a threshold. Fig. C2 (a),
(b), and (e) show thatmostmethods obtain an improvement in accura-
cy with the use of the filter. In Fig. C2 (d), with the filter, the three
methods with soft fusion show an obvious decrease in FAR, which indi-
cates our point made above. However, when the threshold is too small,
such as 0.5, most of the change detection accuracies show a slight de-
crease, since too many pixels are excluded from the soft fusion. If the
threshold is set as 0, all the methods are equal to the traditional post-
classification method. This conclusion can also be verified by the exper-
imentwith the Nanjing TM dataset. Therefore, we can conclude that the
filter for the class probability used in this paper is effective at reducing
the false alarms caused by spectral variation within the same class.

5.3. LULC changes in urban expansion monitoring

LULC changes are essential indicators for the monitoring of urban
development and expansion (Hu and Zhang, 2013; Zhang and Zhang,
2007). The “from-to” change information can illustrate the expansion
tendency of a city (Yuan et al., 2005). In order to analyze the expansion
Fig. 8. Statistics of the “from-to” changes for: (a) the Nan
of the two study sites in this paper, the statistics of the “from-to” chang-
es obtained by the proposed method are displayed in a 3×3 grid in
Fig. 8. The statistical bars are normalized according to the maximum
numbers of changes in each dataset.

From Fig. 8 (a), it can be observed that the expansion of the city of
Nanjing mostly took place in the south of the study site, in the 4th,
7th, and 8th sub-regions. Compared with the developed urban areas
of Nanjing (the 1st and 2nd sub-regions), the newly developing subur-
ban areas experienced a dramatic change fromagriculture to urban. This
phenomenon is shown in the fact that numerous changes from vegeta-
tion to city or soil appeared in the suburban areas. It is worth noting that
the changes from vegetation to soil make up a large proportion of the
changes, and it is likely that these “idle” regions will be further devel-
oped in the next few years.

The city ofMaanshan experienced development and expansion in its
suburban areas (the 5th and 8th sub-regions), as shown in Fig. 8 (b). In
the 5th sub-region, the major change type is from vegetation to city. In
the suburban areas in the south of the city (the 8th sub-region), numer-
ous idle areas (from vegetation to soil) have appeared, which suggests
that the future urban expansion will take place in the south of the city
of Maanshan.

From the above analysis, it can be seen that the LULC change infor-
mation obtained by the proposed method is crucial information for
the monitoring of urban development and expansion. The statistics of
the “from-to” LULC changes can be used to illustrate the development
tendency of a city. However, due to the many different applications,
the unit regions for such statistics are often different, e.g., total urban
area (Yuan et al., 2005), spatial grids (Xiao et al., 2006), buffer zones
jing TM dataset; and (b) the Maanshan TM dataset.
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(Seto and Fragkias, 2005), and city planning patterns such as ring roads
(Li et al., 2011).

5.4. Limitations

The proposed Bayesian soft fusion method takes advantage of the
class probabilities from independent classification and the change prob-
ability from change detection to obtain the optimal class combinations
of coupled pixels in multi-temporal images. Thus, the performance of
the proposed method mainly depends on the accuracies of class proba-
bility and change probability.

For independent classification, if the classifier doesn't provide
class probability, the a posteriori probability of class combina-
tions cannot be calculated. It is worth noting that the proposed
Bayesian soft fusion method improves the final performance on
the basis of independent classification. If the classification
methods cannot provide accurate class probabilities, the accura-
cies of change detection and transition identification will also
be unsatisfactory.

Besides the class probability, the change probability also has signifi-
cant effect on thefinal result. It can be observed that, if the change prob-
ability is not very accurate, such as those obtained by SSFA and IRMAD
in the experiments, the results will be only slightly better, or even
worse than that of the traditional post-classification method, as shown
in Table 1 and Table 2. Thereforein the proposed method, we utilize
ISFA algorithm to provide accurate change probability.We can conclude
that, in some special cases when the changes are extremely complex,
ISFA cannot get a good result, and thus the proposed method will fail
to get an improvement compared with the traditional post-
classification. Then, other methods, such as supervised ISFA (S-ISFA)
(Zhang et al., 2014), can be considered to replace ISFA for a better
performance.

In this paper, the proposed Bayesian soft fusion provides a frame-
work for the improvement of the traditional post-classification
method. ISFA is used in the proposed method since it can provide ac-
curate change probability information. Other change detection
methods, which have the ability to produce more accurate change
probability, can be utilized in the framework with Bayesian soft fu-
sion in the future.

In real cases, some landscapes with the same class will show differ-
ent spectral features in multi-temporal images. These landscapes will
obtain high change probabilities, and trend to belong to different classes
by the proposed Bayesian soft fusion, as discussed in Section 5.2. Thus, it
will bring some false alarms without the class probability filter, which
can be indicated with higher false alarms rate in Fig. C1 and Fig. C2 in
Appendix C. Another limitation of the class probability filter is the selec-
tion of threshold. Different thresholds will lead to different accuracies,
as shown in Fig. C1 and Fig. C2. According to our experiences, we recom-
mend that 0.7 is a suitable threshold for the balance of Bayesian soft fu-
sion and independent classification.
Table A1
Reference samples of the Nanjing TM dataset (pixels).

TM 2000 TM 2002

01City 02Soil

01City 3934 104
02Soil 370 119
03Veg. 204 577
04Water 167 24
Total 4675 824
6. Conclusion

Accurate and detailed land-use/land-cover (LULC) change detec-
tion is of great importance for a wide variety of applications, such as
ecosystem monitoring and urban development studies. Post-
classification is a widely used method to provide “from-to” change
information, but it suffers from the accumulation of independent
misclassification errors. Therefore, in this paper, we have proposed
a new post-classification method with iterative slow feature analysis
(ISFA) and Bayesian soft fusion, which integrates the class probabil-
ity from independent classification with the continuous change
probability from change detection. The continuous probability of
pixel pairs to be changed is provided by ISFA, and the optimal class
combination is obtained by fusing the class probability and change
probability with Bayesian soft fusion.

The results of two experimentswithmulti-temporal TM images con-
firmed the effectiveness and advantage of the proposed method. Com-
pared with the traditional post-classification method, the proposed
method has the ability to clearly improve the performance from all as-
pects, including the accuracy of the change/non-change, the accuracy
of the “from-to” change type, the detection rate, the false alarm rate,
and the comprehensive assessment of F-score. The existing hard fusion
with CVA mainly focuses on avoiding false alarms, while the proposed
soft fusion based on Bayesian theory aims at increasing the detection
rate, and the proposed ISFA can provide accurate change probability to
decrease the false alarm rate at the same time. Therefore, the proposed
method outperforms the hard fusion methods in change detection and
transition identification in most cases. The qualitative and quantitative
evaluations also confirmed that the class probability filter is effective
in suppressing the false alarms caused by spectral variation. Themanual
threshold of class probability filter will have influence on the final per-
formance, and 0.7 is recommended for the balance. In summary, the
proposed method achieved the best performance in all the experi-
ments conducted in this study, and it is superior to the other im-
proved classification-based methods. Considering its effectiveness
and usability, the proposed method has the potential to be widely
applied in real applications, where an accurate LULC change map is
extremely useful for monitoring and analyzing city development
and expansion.

Acknowledgements

This work was supported by the National Natural Science Foun-
dation of China under Grants 61601333, 61471274, 41431175, and
by the China Postdoctoral Science Foundation under Grants
2015M580667 and 2016T90733. The authors would like to thank
the editor and reviewers for their instructive comments that helped
to improve this manuscript. They would also like to thank the
Geospatial Data Cloud for providing free downloads of the Landsat
imagery.
Appendix A. Reference samples of the experiment datasets

In order to evaluate the performance of the proposedmethod, we have selected 14,756 pixels for the Nanjing TM dataset, and 9641 pixels for the
Maanshan TM dataset. The details for the reference samples are shown in Tables A1 and A2
Total

03Veg. 04Water

4 5 4047
262 339 1090
4361 210 5352
97 3979 4267
4724 4533 14,756



Table A2
Reference samples of the Maanshan TM dataset (pixels).
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TM 2007
0
0
0
0

N
C
T
P
O

N
C
T
P
O

N
C
T
P
O

TM 2010
 Total
01City
 02Soil
 03Veg.
 04Water
1City
 2024
 0
 0
 0
 2024

2Soil
 83
 1375
 62
 0
 1520

3Veg.
 241
 764
 2345
 339
 3689

4Water
 15
 0
 205
 2188
 2408

otal
 2363
 2139
 2612
 2527
 9641
T
Appendix B. Quantitative assessment for the improvement in change detection

In the experiment of Nanjing TM dataset, the confusion matrices for the change detection by the traditional post-classification method and the
proposed method are shown in Table B1 and Table B2. The producer's accuracies of non-change and change are both improved from 88.0% to
96.1%, and from 88.3% to 93.7%. The user's accuracies of non-change and change are also improved from 97.5% to 98.8%, and from 58.3% to 82.2%.
The overall accuracy (OA) and kappa both show a great increase from 88.0% to 95.7%, and from 0.631 to 0.850. The quantitative evaluation demon-
strates that the proposed method can perform significantly better than the traditional post-classification method.

Table B1
Change detection assessment of the traditional post-classification method (pixels).
Test data
 Reference data
 User's acc.
Non-change
 Change
 Total
on-change
 10,901
 276
 11,177
 97.5%

hange
 1492
 2087
 3579
 58.3%

otal
 12,393
 2363
 14,756

roducer's acc.
 88.0%
 88.3%

verall acc.
 88.0%

appa
 0.631
K
Table B2
Change detection assessment of the proposed method (pixels).
Test data
 Reference data
 User's acc.
Non-change
 Change
 Total
on-change
 11,914
 150
 12,064
 98.8%

hange
 479
 2213
 2692
 82.2%

otal
 12,393
 2363
 14,756

roducer's acc.
 96.1%
 93.7%

verall acc.
 95.7%

appa
 0.850
K
In the experiment of Maanshan TM dataset, the confusion matrices for the change detection results of the traditional post-classification method
and the proposed method are shown in Table B3 and Table B4. This shows that the proposed method obtains an obvious improvement over the tra-
ditional post-classification method. The producer's accuracies increase from 94.0% to 96.5%, and from 93.1% to 95.5%. The user's accuracies increase
from 98.4% to 99.0%, and from 76.9% to 85.5%. Comparedwith the improvement for OA (93.8% to 96.3%), the increase of the kappa coefficient is more
significant (0.804 to 0.880), due to the imbalance of the test samples.

Table B3
Change detection assessment of the traditional post-classification method (pixels).
Test data
 Reference data
 User's acc.
Non-change
 Change
 Total
on-change
 7454
 118
 7572
 98.4%

hange
 478
 1591
 2069
 76.9%

otal
 7932
 1709
 9641

roducer's acc.
 94.0%
 93.1%

verall acc.
 93.8%

appa
 0.804
K



Table B4
Change detection assessment of the proposed method (pixels).
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Test data
Fig. C1. Accuracy assessment with different t

N
C
To
P
O

Reference data
hresholds for: (a) change/non-change; (b) “from-to” land-cover transition; (c) detection rate; (d) false alarm rate; and (e
User's acc.
Non-change
 Change
 Total
on-change
 7656
 77
 7733
 99.0%

hange
 276
 1632
 1908
 85.5%

tal
 7932
 1709
 9641
roducer's acc.
 96.5%
 95.5%

verall acc.
 96.3%

appa
 0.880
K
Appendix C. Evaluation with different thresholds of class probability filter

In order to evaluate the performance with different thresholds, the accuracy assessments for the different methods with respect to different
thresholds of class probability filter are shown in Figs. C1 and C2. The “S” and “H” after the change detection represent the different fusion methods,
namely soft fusion and hard fusion. The horizontal dashed line indicates the result of post-classification. When the threshold is 1, it means that the
filter for the class probability is of no use. If one curve is above the other curves, it means that the corresponding method is superior to the other
methods despite of the class probability filter.
) F-score.
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In Nanjing TM dataset, Fig. C1 (a) and (b) show that the proposed method obtains the highest change detection accuracy and the second highest
accuracy for the “from-to” land-cover transition, in all cases. Fusing the DR and FAR in Fig. C1 (c) and (d), the F-score shown in (e) demonstrates that
the proposedmethod performs better than all the othermethods in the same condition. Fig. C1 also demonstrates that the class probability filter has
the ability to improve the performance of all the methods, and the threshold has an influence on the final result.
Fig. C2. Accuracy assessment with different thresholds for: (a) change/non-change; (b) “from-to” land-cover transition; (c) detection rate; (d) false alarm rate; and (e) F-score.
In Maanshan Dataset, the accuracy assessments with different thresholds of class probability filter for each improved change detection method
are shown in Fig. C2. Except for the threshold of 1, the curves of the proposedmethod are all above the othermethods in Fig. C2 (a) and (b). Further-
more, in the comprehensive evaluation with the F-score shown in Fig. C2 (e), the proposed method also shows a better ability to detect changes.
Fig. C2 also illustrates that the class probability filter improves the performances of all the methods.
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