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a b s t r a c t

With the continuous emergence of various network attacks, it is becoming more and more important
to ensure the security of the network. Intrusion detection, as one of the important technologies to
ensure network security, has been widely studied. However, class imbalance leads to a challenging
problem, that is, the normal data is much more than the attack data. Class imbalance will lead to the
deviation of decision boundary, which makes higher value attack data classification error. In the face
of imbalanced data, how to make the classification model classify more effectively is called imbalanced
learning problem. In this study, we propose a tabular data sampling method to solve the imbalanced
learning problem, which aims to balance the normal samples and attack samples. Firstly, for normal
samples, on the premise of minimizing the loss of sample information, the K-nearest neighbor method
is used for effective undersampling. Then, we design a tabular auxiliary classifier generative adversarial
networks model (TACGAN) for attack sample oversampling. TACGAN model is an extension of ACGAN
model. We add two loss functions in the generator to measure the information loss between real data
and generated data, which makes TACGAN more suitable for the generation of tabular data. Finally, the
normal data after undersampling and the attack data after oversampling are mixed to balance the data.
We have carried out verification experiments on three real intrusion detection data sets. Experimental
results show that the proposed method achieves excellent results in Accuracy, F1, AUC and Recall.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

With the rapid updating and development of network tech-
ology, network security issues have become particularly promi-
ent. Network security has become an important factor hindering
he development of network technology. As one of the impor-
ant technologies to ensure network security, intrusion detection
ystem (IDS) [1] has been given more and more attention by
esearchers.

As an active defense technology, intrusion detection can im-
rove the security of the network. Previous intrusion detec-
ion methods are mainly based on traditional machine learning
ethods, such as random forest, support vector machine, naive
ayesian and decision tree [2–4]. The data in the current network
nvironment is more massive, complex and multidimensional
han ever before. Traditional machine learning methods are usu-
lly difficult to effectively classify complex high-dimensional
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data. Since the theory of deep learning was put forward, as
an important branch of machine learning, deep learning has
attracted more and more attention of researchers. Some scholars
also began to introduce deep learning methods into the field
of intrusion detection. Common intrusion detection methods
based on deep learning include deep autoencoder networks [5,
6], convolutional neural networks [7,8] and recurrent neural
networks [9,10]. These deep learning algorithms can effectively
improve the performance of intrusion detection systems.

Although scholars have done extensive research on intrusion
detection and made good progress, the class imbalance is still an
important factor limiting the performance of intrusion detection.
Imbalanced data sets represent skewed distributions, i.e., one
class has fewer instances than another. The ratio of the majority
class to the minority class is called the imbalance rate (IR, as
shown in Eq. (1), where nmaj and nmin represent the number of
ajority classes and minority classes respectively). When the
ttack data is obviously less than the normal data, the class
mbalance problem will appear [11]. Class imbalance is a common
roblem in the field of intrusion detection. For example, in the
tandard network intrusion detection data set KDDCUP99, there
re 97,278 normal samples in the training set, while there are

nly 52 R2L attack data. The imbalance rate between normal
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amples and attack samples was 1870.73. When this extreme
mbalance occurs, the classifier may predict all the results as
ormal samples, which leads to extremely low prediction accu-
acy of attack data. In the real network environment, although
he number of attack samples is small, the value represented is
ore important. Compared with the misclassification of normal
amples, the misclassification of attack samples is obviously more
isadvantageous.

R =
nmaj

nmin
(1)

Based on this, in order to solve the class imbalance prob-
lem in intrusion detection data, we design a new data sampling
method. Before data sampling, in order to eliminate the influence
of data sparsity, a feature dimension reduction method based on
deep autoencoder network is proposed. Feature dimensionality
reduction can not only eliminate the influence of sparse data,
but also reduce the complexity of data sampling. The proposed
method includes two kinds of data sampling methods, namely,
undersampling of normal samples and oversampling of attack
samples. First of all, we use K-nearest neighbor method to divide
the data into outliers, boundary data and trusted data. Then, on
the premise of minimizing the loss of normal sample information,
the undersampling of samples is carried out. Specifically, we
undersampled the outliers and the normal data close to the attack
sample. Then, a generative adversarial network model, TACGAN,
is designed to oversample attack samples. TACGAN model is an
extension of ACGAN model. We add two loss functions in the
generator to measure the information loss between the real data
and the generated data, so that TACGAN is more suitable for the
generation of tabular data. In addition, in order to eliminate the
noise that may exist in the generated data, a data filtering module
is designed in TACGAN.

To sum up, the main contributions of this study can be sum-
marized as follows:

• We propose a new hybrid sampling method to solve the
class imbalance problem in intrusion detection data set. On
the one hand, this method can effectively undersampling
normal samples. On the other hand, TACGAN can learn
the distribution of attack samples to generate almost real
sample data, so as to rebalance the data set.

• In this study, the deep generative model is used to replace
the traditional oversampling method, so as to solve the
problem that the traditional oversampling method cannot
effectively learn the distribution of samples, which leads to
the generation of unreal samples.

• We design a new generative adversarial network model,
TACGAN, which is more suitable for the generation of tabu-
lar data.

The rest of the paper is organized as follows. The second sec-
tion introduces the advanced technology of intrusion detection,
and summarizes the related methods of dealing with imbalanced
data. The third section explains our method in detail. In the
fourth section, the comparison and verification experiments of
related algorithms are carried out, and the results are analyzed
and discussed. The fifth section is the conclusion part, which
summarizes the methods proposed in this study and discusses
the possible research directions in the future.

2. Related works

In this section, we summarize the algorithms and research

work related to this study.
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2.1. Intrusion detection system

Machine learning and deep learning have been widely used in
intrusion detection models in the past ten years. These methods
can achieve good prediction results by learning the effective
features in the data. Most of the traditional machine learning
methods are based on supervised learning model [2,3,12]. Liang
et al. [13] Proposed an industrial network intrusion detection
algorithm based on multi feature data clustering optimization
model. The algorithm classifies the weighted distance and safety
factor of data according to the priority threshold of each node’s
data attribute characteristics. Chang et al. [14] Discussed the fea-
sibility of random forest algorithm in feature selection of impor-
tant data, and combined with support vector machine to classify
the effective features finally selected. Bhattacharya et al. [15]
Proposed a model based on principal component analysis (PCA)
and firefly algorithm to classify intrusion detection data sets.
The model first uses the hybrid PCA-firefly algorithm to reduce
the dimension of data, and then uses the XGBoost algorithm to
classify the reduced data. After the deep learning theory was put
forward, it has been widely concerned by researchers because
of its good feature learning ability. Some scholars who study
intrusion detection begin to introduce deep learning method into
the field of intrusion detection [16–18]. Shone et al. [19] Proposed
an nonsymmetric deep autoencoder (NDAE) for unsupervised
feature learning, and constructed a new classification model by
combining NDAE with RF classification algorithm. The model
achieves good results on the standard intrusion detection data. In
order to realize network intrusion detection of small sample data,
Xu et al. [20] Designed a deep neural network (DNN) detection
framework named FC-Net, which mainly includes two parts: fea-
ture extraction network and comparison network. FC-Net learns
the feature map for classification from a pair of network traffic
samples, then compares the input feature map, and finally dis-
criminate whether the pair of samples belong to the same type.
Rehman et al. [21] Proposed a combined model based on convolu-
tional neural network (CNN) and attention-based gated recurrent
unit (GRU) to detect monomer and hybrid attacks. Experimental
results show that the combination of CNN and GRU effectively
improves the performance of attack detection.

2.2. Imbalanced data processing methods

Imbalanced learning is a long-term challenging problem in the
field of machine learning. In the application of many practical
problems, the imbalance rate IR will reach a very high value.
When this extreme imbalance occurs, the classifier may predict
all the results as majority classes, resulting in a very low clas-
sification accuracy of minority classes. In practical application,
although the number of minority classes is small, it can provide
more important information and has higher value than majority
classes. Therefore, the cost of classification error for minority
classes is often much higher than that for majority classes. Based
on this, minority classes in imbalanced data are often the focus
of data mining.

2.2.1. Traditional methods
Traditional methods for dealing with imbalanced data include

data level, algorithm level and ensemble learning [22–24](As
shown in Fig. 1). The data level is mainly based on the oversam-
pling and undersampling of samples, which aims to balance the
samples before data classification [25,26]. The common data level
methods include random oversampling, SMOTE algorithm [27]
and random undersampling. To solve the imbalanced learning
problem from the algorithm level, it is mainly to improve the
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Fig. 1. Imbalanced data processing methods.
xisting algorithm or design a new algorithm to train the im-
alanced data, so as to improve the classification accuracy of
he minority class [28]. The most frequently used method at the
lgorithm level is the cost-sensitive classification method [29].
ifferent from the traditional single classification model, ensem-
le learning integrates the basic model into a unified model by
onstructing different basic models. Ensemble learning can make
p for the shortcomings of a single classification model, so that
he classification results have better robustness [30].

In the research field of intrusion detection, class imbalance has
lso attracted extensive attention of researchers [31–33]. In order
o solve the class imbalance problem in intrusion detection data
et, oversampling and undersampling methods are introduced
nto intrusion detection system [34,35]. For example, aiming at
he problem of imbalanced data in network intrusion detection,
iang et al. [36] Proposed a detection framework combining hy-
rid sampling and deep hierarchical network. In this framework,
ne-side selection (OSS) algorithm and SMOTE technology are
sed for undersampling and oversampling, respectively, in order
o balance the data set. Zhang et al. [32] Proposed a new imbal-
nced data set processing technique called SGM, which combines
MOTE oversampling technique and clustering based undersam-
ling Gaussian mixture model (GMM). The intrusion detection
ramework based on SGM can effectively solve the class imbal-
nce problem and improve the detection accuracy. In addition,
lgorithm level and ensemble learning can also be used to solve
he imbalanced learning problem in intrusion detection [37–39].
or example, in order to alleviate the inconsistency between
imensionality reduction and feature retention in imbalanced
ata, Zhou et al. [40] Proposed a variational long short-term
emory (VLSTM) learning model based on reconstructed feature

epresentation. VLSTM model can deal with imbalanced data and
igh-dimensional features effectively. Bdi et al. [37] Designed an
mproved algorithm called I-siamidIDS to solve the imbalanced
earning problem. I-siamidIDS can detect majority and minor-
ty classes at the algorithm level without using any data level
alancing techniques. I-siamidIDS uses a two-layer integration
echanism. The first layer is used to identify normal and attack
amples, and the second layer is used to classify attack samples.
hou et al. [38] Developed a new integrated system based on the
mproved area under curve adaptive enhancement algorithm to

chieve more effective detection. The system combines multiple
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classifiers based on M-AdaBoost-A into a whole by adopting
different strategies.

Although the traditional imbalanced data processing methods
have been widely studied, they have inherent defects. Random
oversampling will lead to overfitting due to the duplication of
samples. SMOTE oversampling method is to learn from the local
neighborhood of sample points, without considering the overall
distribution of minority classes. Therefore, the data generated by
this method cannot effectively fit the distribution of minority
classes, which makes the authenticity of the generated samples
lack. Random undersampling is easy to delete more useful infor-
mation, resulting in changes in the distribution of the original
data. The cost-sensitive classification method is usually difficult
to determine the appropriate cost factor matrix in practical ap-
plication. In addition, the setting of error classification cost needs
to be given by experts in related fields, so this kind of method
has poor scalability. In ensemble learning, the available data
of a single basic model is usually less, which is easy to cause
overfitting, thus making it less practical.

2.2.2. Generative adversarial network
Generative Adversarial Network (GAN) is a framework to learn

from unknown data distribution and generate similar samples.
GAN is mainly composed of generator and discriminator. The
generator is mainly used to generate samples whose distribution
is as close to the real data as possible. The discriminator is used
to receive the mixed data of the original sample and the gener-
ated sample, and discriminate the real and fake data from them.
Generation model G and discrimination model D are completely
independent, and their optimization process is independent alter-
nating iterative training. For the whole network, the loss function
can be written as:

min
G

max
D

L(D,G) = Ex∼Pr [log(D(x))] + Ex∼Pg [log(D(x
′))] (2)

where x represents real data, x′ represents fake sample data gen-
erated by generator G. Pr and Pg represent real data distribution
and generated data distribution respectively. When Pr and Pg
have the same distribution, it is difficult for D to discriminate
whether the samples are real or fake, that is, the probability is
0.5, and the generator can generate enough realistic samples.

GAN has been widely concerned by industry and academia
because of its excellent data synthesis ability, and has been suc-
cessfully applied to the fields of computer vision, natural lan-

guage processing, network security and so on [41–43]. Due to
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he good data generation ability of GAN, it is also used to solve
he problem of imbalanced learning [44,45]. For example, Xu
t al. [46] Proposed a generative adversarial network model that
an generate tabular data. By adding noise and KL divergence to
he loss function, the discrete characteristic data is effectively
enerated. Engelmann et al. [47] Adopted a method based on
onditional Wasserstein GAN (CWGAN), which can effectively
odel tabular data sets with numerical variables and category
ariables. Experimental results on seven credit scoring data sets
how that the over sampling method based on CWGAN is better
han the random over sampling and smote style methods. Chen
t al. [48] Proposed an acoustic scene classification data enhance-
ent scheme based on generative adversarial neural networks
ith auxiliary classifiers (ACGANs). Combined with the designed

ong-term scalogram extracted by wavelet scale, the framework
an achieve high classification accuracy and generalization ability
or test samples. Andresini et al. [49] Described a deep learn-
ng method for network traffic classification. The basic idea is
o represent the network traffic as a 2D image, and use the
mage to train GAN and convolutional neural network. GAN is
sed to expand the malicious network traffic, and CNN is used
s the classifier of intrusion detection model. Merino [43] and
hahriar [50] use GAN to generate malicious traffic data, so as to
alance normal traffic and abnormal traffic. Experimental results
how that the data generated by this method is very close to the
istribution of various attack data.
Although relevant scholars consider the impact of class imbal-

nce on classification effect and apply GAN to the generation of
inority class samples, they do not consider the impact of major-

ty classes. majority class samples are the dominant classes in the
ata set. Only by reducing the advantages of negative classes and
nhancing the separability of the overlapping regions of classes
an the classification performance be further improved [51,52].
herefore, based on the above methods cannot effectively solve
he problems of class overlap and generating real minority class
amples, this study proposes a combination algorithm based on
NN and generative adversarial network to solve the unbalanced
earning problem in intrusion detection. KNN is used for oversam-
ling the majority class samples in the class overlap region, while
ACGAN is used to generate more real minority class samples. The
inal experimental results show that the proposed hybrid method
as better classification effect than the traditional method and the
eneral deep generation model.

. Methodology

In this section, we propose an intrusion detection system
ramework, TACGAN-IDS, which is used to deal with imbalanced
ata. The framework effectively combines undersampling and
versampling methods to achieve class balance.

.1. TACGAN- IDS framework

The framework of IDS system proposed in this paper is shown
n Fig. 2, which mainly includes four parts: data set preprocess-
ng, TACGAN model, data undersampling, and deep classification
etwork. The specific detection process of the IDS framework is
s follows.

• Data set preprocessing. The process includes three steps:
data preprocessing, feature extraction and data partition.
The data preprocessing process includes: (1) Attribute map-
ping, which transforms character network data features into
numerical data. (2) Data normalization, due to the large
difference between the data of the same attribute features,
which affects the training effect, so the data should be
normalized to the [0,1] interval.
243
Fig. 2. TACGAN-IDS model framework.

The feature extraction network adopts deep autoencoder net-
work (DAN). In the process of data preprocessing, the data af-
ter attribute mapping has the characteristics of high-
dimensional sparsity. Therefore, we use DAN model to ex-
tract effective features and remove redundant features.
Data set division.We divide the original data set into training
set and test set according to the ratio of 4:1.

• Attack data generation based on TACGAN. Compared with
normal data, attack type data in network intrusion detection
data set is usually difficult to obtain. Therefore, we design
a TACGAN model, which is mainly used to generate attack
type data. The filter is used to further filter the synthetic
data generated by the generator, so that the distribution
of the generated sample data is more consistent with the
attack data.

• Undersampling of normal data based on K-nearest neigh-
bor. Although the normal samples are much more than
the attack samples, they also contain noise samples and
redundant samples. Therefore, we design a normal sample
undersampling method based on K-nearest neighbor.

• Training and testing of deep classification model. The bal-
anced data set is used to train the deep neural network
model, and then the final classification results are tested
through the test set.

3.2. Data set preprocessing

3.2.1. Data preprocessing
This paper uses KDDCUP99 data set, UNSW-NB15 data set and

CICIDS2017 data set as intrusion detection experimental data.
KDDCUP99 data set and UNSW-NB15 data set contain character
data, so they need to be preprocessed. We take KDDCUP99 data
set as an example to introduce the preprocessing process.
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Fig. 3. Numeralization.

Fig. 4. Structure of AE. The structure of AE consists of encoder and decoder.

umerization. The original KDDCUP99 data set contains 41 fea-
ure attributes, three of which are character attributes, namely
rotocol_ Type, Service and Flag. Protocol_ Type includes three
rotocol types, Service includes 70 service types, and Flag in-
ludes 11 states. The encoding process of three types of character
eatures is as follows (Fig. 3).

ormalization. After the numeralization processing, the character
ata in the data set is converted to the numerical data, but the
umerical values in the numerical data are quite different, for
xample, the value range of the feature attribute ‘‘duration’’ is
0,58329]. The large difference of numerical value is easy to cause
low convergence of network and saturation of neuron output, so
t is necessary to normalize the original data. In this study, the
aximum minimum normalization method is used to normalize

he data in the data set to [0,1] interval. The Eq. (3) is as follows:

∗
=

x − xmin

xmax − xmin
(3)

Where x∗ is the normalized data, x is the data to be processed,
xmin is the minimum data value in the current attribute, and xmax
is the maximum data value in the current attribute.

3.2.2. Feature extraction
Through data preprocessing, we can see that the dimension

of intrusion detection data after one-hot encoding has become
sparse high-dimensional feature data. The sparsity of data is
widely considered as one of the reasons for the poor classification
accuracy. In this study, we use deep autoencoder network to
extract effective features from the original intrusion data.
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AutoEncoder (AE) is an unsupervised learning algorithm, which
does not need to use label information of data. AE consists of an
encoder and a decoder. The encoder is used to extract the features
of the original data, and the decoder is used to reconstruct the
original data. The learning process of AE is to reduce the error
between reconstructed data and input data through training, so
as to learn the implicit feature representation of data.

As shown in Fig. 4, it is a traditional AutoEncoder structure.
Let the original spatial data be Rm×n, m be the number of data
instances in the original space, and n be the dimension of each
instance data, x(i) ∈ Rn, (i = 1, 2, . . . ,m). Each training data x(i) is
perated by the encoder (Eq. (5)), and the feature representation
(i) of the hidden layer can be obtained.
(i)

= fθ (x(i)) = σ (Wx(i) + b) (4)

here θ = (W , b) is the network parameter, W is the weight
atrix from the input layer to the hidden layer, and b is the
ias vector, σ Is the activation function. Then, the feature rep-
esentation of the hidden layer is decoded (Eq. (6)) to obtain the
econstruction vector z(i).
(i)

= gθ ′ (y(i)) = σ (W ′y(i) + b′) (5)

here θ = (W ′, b′) is the decoder parameter, W ′ is the weight
atrix from the hidden layer to the output layer, usually W ′

=
T . The model parameters can be optimized by minimizing the

econstruction error (Eq. (7)).

∗, θ ′∗
= argmin

θ,θ ′

m∑
i=1

L(x(i), z(i)) = argmin
θ,θ ′

m∑
i=1

L(x(i), gθ ′ (fθ (x(i))))

(6)

where L is the cost function. In this study, cross-entropy loss is
sed as the cost function, and the expression is Eq. (8).

(x(i), z(i)) = −

n∑
j=1

(x(i)j lg z(i)j + (1 − x(i)j ) lg(1 − z(i)j )) (7)

Then the cost function of the whole data set is Eq. (9).

J = −
1
m

m∑
i=1

n∑
j=1

(x(i)j lg z(i)j + (1 − x(i)j ) lg(1 − z(i)j )) (8)

In order to prevent overfitting, we add an L2 regulariza-
tion weight attenuation term. is the corresponding penalty fac-
tor, which controls the attenuation degree of the weight in the
penalty term. Then the improved cost function is Eq. (10).

J ′ = J + λ∥W∥2 (9)

The deep autoencoder network used in this study is a deep
neural network model structure composed of multi-layer autoen-
coder networks. The hidden layer of the encoder is designed
as a 100 × 64 fully connected dense structure, and the feature
dimension of the output layer is 20. The hidden layer uses Relu
as the activation function. The hidden layer of the decoder is
designed as a 64 × 100 fully connected dense structure, using
Relu as the activation function, and the output layer uses sigmoid
function as the activation function.

3.3. Undersampling of normal data

3.3.1. Class overlap
In the study of imbalanced learning problems, the imbalanced

rate between classes is not the only factor that makes model
learning difficult. In fact, even when there is an imbalance be-
tween classes, some data sets can still get good classification
results through appropriate algorithms (As shown in Fig. 5a).
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Fig. 5. Sample example. Figure (a) shows the imbalanced data set without class
overlap, Figure (b) shows the imbalanced data set with class overlap, and divides
the data.

However, when there is overlap between classes, even balanced
data has the problem of learning difficulty. For imbalanced data,
when there is overlap between classes, the classification accuracy
of the positive class tends to drop sharply. Most of the traditional
imbalanced learning research is only to obtain more balanced
training data, and does not consider the problem of overlapping
between classes.

Class overlap can be defined as: when two or more class
instances share a common area in the data space, the problem
of class overlap will occur. In the shared area with overlapping
classes, even if the instances belong to different classes, their
eigenvalue attributes are similar. Due to the similarity of at-
tributes between features, instances of different classes in the
overlapping area will cause them to become extremely compli-
cated in the task of imbalanced data classification. An example
of imbalanced data with overlapping classes is shown in Fig. 5b.
In imbalanced data sets with overlapping regions, the major-
ity class of overlapping regions is usually the dominant class.
In the overlapping region, the majority class will be more fre-
quently and clearly input to the classification model for training
than the minority class. Therefore, the decision boundary of the
trained classification model is usually more inclined to the major-
ity samples, which makes the minority samples near the decision
boundary more prone to misclassification.

3.3.2. Data undersampling based on KNN
K-nearest neighbor algorithm is a commonly used method

in classification algorithms based on instance learning [53]. Let
X = {x1, x2, . . . , xn}, the label of each sample xi is known. For the
test sample point x, in the set X , the k points nearest to it are
denoted as X ′

= {x′

1, x
′

2, . . . , x
′

k}. Then, the classification method
of nearest neighbor rule is to classify point x as the class of the
data with the most samples in X ′.

In order to solve the overlapping problem of boundary re-
gion, we design a boundary sample sampling method based on
K-nearest neighbor. In this study, based on the neighborhood
features of the samples, we divide the samples in the data set into
three types: Outliers, boundary data and Trusted data (as shown
in Fig. 5b). The specific division method is as follows:

• Each sample is defined as the sample to be tested in turn,
and other samples except the selected sample to be tested
are defined as known samples;

• The distance between each sample to be tested and the
known sample is calculated;

• Sort the distance between each sample to be tested and the
known sample in an increasing relationship;

• Five sample points with the smallest distance are selected;
• The number of minority sample points and majority sample

points was calculated;
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• We record the number of similar samples in 5 samples as s.
The definitions of the three types of data are as follows:
Outliers: When s = 0, it means that the 5 samples around
the sample data belong to different classes from this sample.
Therefore, we mark such samples as outliers.
Boundary data: When s = 1, 2, 3 or 4, it means that the sam-
ple contains both the same and different samples. Therefore,
we divide these samples into boundary samples.
Trusted data: When s = 5, it means that the five samples
around the sample are all samples with the same attributes.
Therefore, we classify this sample as trusted data.

Based on the division of the above samples, the specific pro-
cess of undersampling normal data samples in this study is as
follows:

Outliers undersampling: Since outliers can be regarded as noise
samples, we choose to delete outliers in normal data samples
(Outliers in normal samples can be regarded as noise in attack
samples). According to the above definition of outliers, s repre-
sents the number of samples around a sample that belongs to
the same class as it. We select the normal sample when s = 0 as
the deletion object, that is, we delete the outliers in the normal
sample.

Boundary data undersampling: From the above boundary sam-
ple definition, when s = 1 or 2, only 1 or 2 of the five nearest
samples representing this normal class sample are of the same
class. It can be judged that this sample is closer to the area
where the attack sample is located. Therefore, in order to reduce
the classification difficulty of attack samples in class overlapping
areas, we delete such normal traffic data.

3.4. Design of TACGAN model

3.4.1. TACGAN
ACGAN is a generative adversarial network method for im-

age synthesis, which greatly improves the performance of image
generation. ACGAN combines the advantages of conditional gen-
erative adversarial network (CGAN), semi-supervised generative
adversarial network (SGAN) and information maximizing genera-
tive adversarial network (infoGAN). In ACGAN framework, every
generated sample has corresponding class label. The category
label of generated samples is represented by one-hot encoding to
distinguish different generated samples. Generator G uses noise
z and class label c to generate sample Xfake = G(z, c), and
discriminator D outputs the probability of real and fake samples
and the probability on class label.

D (X) = P (S|X) , P (C |X) (10)

Where P(S|X) is the probability of D discriminate whether the
sample is real data; P(C |X) denotes the probability of D discrim-
inating the class label to which the sample belongs.

Compared with CGAN, the discriminator of ACGAN can not
only discriminate the ‘‘real and fake’’ of samples, but also dis-
criminate the category of samples. However, the strategy behind
the ACGAN is to instead of feeding the class information to the
discriminator, one can task the discriminator with reconstructing
the label information. Based on this, the objective function of
ACGAN discriminator is divided into two parts: log likelihood Ls
of correct source and log likelihood Lc of correct class.

LS = E[log p(s = real|Xreal)] + E[log p(s = fake|Xfake)] (11)

LC = E[log p(C = c|Xreal)] + E[log p(C = c|Xfake)] (12)

In the training process, the training goal of discriminator D is
to maximize LS + LC , and the training goal of generator G is to
maximize L − L .
S C
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Fig. 6. Model structure diagram of TACGAN.
The structure of our proposed TACGAN model is shown in
ig. 6. TACGAN is used to generate pseudo data samples similar
o the real data distribution. The generation process of attack
amples based on TACGAN is as follows:

• The original sample is divided into training set Ttrain and
test set Ttest . Ttrain is used for training TACGAN model and
classifier (MLP), Ttest maintains the original distribution for
final effect evaluation.

• After preprocessing the data in training set Ttrain, the di-
mension reduced data set can be obtained through DAN.
The data set after dimensionality reduction is divided into
attack sample Tattack and normal sample Tnormal. Tattack is
used for oversampling of attack data and Tnormal is used for
undersampling of normal data

• The TACGAN model is trained by iterative training generator
G and discriminator D:
Discriminator D training: firstly, the random noise z is input
into the generator to generate a set of pseudo sample data.
Then, the pseudo sample data generated by generator G
and the real attack sample are input to discriminator D at
the same time, and the parameters of discriminator D are
updated through error, so as to train the discriminator.
Generator G training: when the discriminator training is
completed, fix the parameters of D. after the generator gen-
erates data again, input it to the discriminator, back prop-
agate the error to the generator, and update the generator
parameters to train the generator.
Iterative training: The generator and discriminator are trained
alternately until Nash peace is reached, that is, the discrim-
ination probability of discriminator D for pseudo samples
and real samples is 0.5.

• The trained TACGAN model is used to generate attack data
similar to real samples.

• Generated sample filtering: when the TACGAN training is
completed, the discriminator D can better distinguish be-
tween true and false samples. Therefore, we use D to filter
246
the inferior samples in the generated samples, so as to
obtain more real attack sample data.

• Finally, we mix the expanded attack samples with normal
samples to make the data set reach class balance, i.e. IR =

1.

3.4.2. Improvement of loss function
The design of ACGAN improves the quality of the generated

image. In order to better generate effective tabular data, we add
a new loss function for the generator, namely information loss. As
shown in Fig. 6, the neural network in the red box represents the
part before the classification layer in the discriminator, which is a
virtual network structure. Our main purpose is to extract the data
features before the classification layer. Using these features, the
output layer can not only discriminate ‘‘real or fake’’ data, but also
discriminate the class label. Therefore, these features extracted
by the hidden layer contain the key feature information of the
input sample. Based on this, we construct a new loss function by
measuring these key features.

Information loss is to design a new regularization penalty
function to force the distribution of generated data close to the
original data. In order to define the information loss, we measure
the information deviation between the original data and the
generated data from the distance and similarity. The distance loss
function is defined as follows:

Ldis =

E(fx)x∼pr (x) − E(fx′ )x′∼pg (x′)


2

(13)

where fx and fx′ represent the high-dimensional features of the
original samples and the samples generated by the generator, re-
spectively, and E(·) represents the average features of all samples
from a batch. The feature distance between the two types of data
is measured by L-2 norm, that is, Euclidean norm. Therefore, Ldis
means a measure of the first-order statistics between the original
data and the generated data features.

In addition, we also define the similarity measure function
between two kinds of data. In this study, cosine similarity is
used to measure the similarity between the original data and the
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enerated data. Cosine similarity is widely used to measure the
imilarity between features in few-shot learning [54], and it is
roved to be an effective similarity measurement method. The
pecific definitions are as follows:

sim =
E(fx)x∼pr (x) · E(fx′ )x′∼pr (x′)

|E(fx)x∼pr (x)||E(fx′ )x′∼pr (x′)|
(14)

the value range of Lsim is (0,1). The closer the value of Lsim is to
1, the more similar the two types of data are. Based on this, we
define information loss as:

LGdev = Ldis − Lsim+1 (15)

Finally, the generator loss function in the TACGAN model is as
follows:

LG = LGori + ηLGdev (16)

where LGori is the loss function of the original TACGAN and η is the
weight coefficient of the control information loss.

3.4.3. Generate data filter
In order to generate more effective attack sample data, we add

a generation data filter in IDS (as shown in Fig. 2). Although the
trained generator can generate effective minority class data, it
may also generate a small number of noise data. The noise data
defined here means that there is a certain deviation between the
distribution of the generated data and the original data. Based
on this, we use the trained discriminator D to design a filter. In
TACGAN, D is a classifier used to discriminate whether the data
is real or fake. When TACGAN training is completed, D will reach
ash equilibrium state, that is, the discrimination probability
iven for the input data is 0.5. Therefore, the discrimination
robability of the generated data in D is used as the filtering con-
ition. When the discrimination probability value deviates from
he predetermined threshold, we regard the data as noise data. In
rder to express quantitatively, we represent the generated data
s X = {x1, x2, . . . , xn} and the output value in discriminator is
(xi). In addition, data similarity difference (SDi) is defined as the
iltering condition. The specific definition of SDi is as follows:

Di = 2 ∗ |0.5 − D(xi)| (17)

t can be seen from the definition of SDi that the more the value
f D(xi) deviates from 0.5, the greater the value of SDi. The value
ange of SDi is [0,1], that is, the larger the value is, the greater the
imilarity difference is.

. Experiment

.1. Benchmark data set

We use three data sets commonly used in intrusion detec-
ion field for experimental verification, namely KDDCUP99 [55],
NSW-NB15 [56] and CICIDS2017 [57].
KDDCUP99 data set: KDDCUP99 data set is a standard data set

ommonly used in intrusion detection. Each instance data in the
ata set contains 41 feature attributes and one label attribute.
here are five types of data in the data set: Normal, DOS, Probe,
2L, U2R. Generally, the 10% KDDCUP99 data set is used as the
raining set, and the Corrected data set is used as the test set.
he data details are shown in Table 1. For DOS data, in order to
onstruct imbalanced data, we randomly selected 45,927 training
ata and 12,4287 test data from the original data set, and the data
f other attack types remained unchanged.
UNSW-NB15: UNSW-NB15 data set is created by IXIA Per-

ectStorm tool, which contains real normal traffic and synthetic
ttack traffic. This data set has nine types of attacks, namely,
247
Table 1
Distribution of the data sets.
Data set Class Samples(Tr) IR(Tr) Attributes

KDDCUP99

Total 148,490 –

41

Normal 97,278 –
DoS 45,927 2.12
Probe 4,107 23.69
R2L 1,126 86.39
U2R 52 1,870.73

UNSW-NB15

Total 182,331 –

47

Normal 136,999 –
Fuzzers 6,062 22.60
Analysis 677 202.36
Backdoor 583 234.99
DoS 4,089 33.50
Exploits 11,132 12.31
Generic 18,871 7.26
Reconnae 3,496 39.19
Shellcode 378 362.43
Worms 44 3,113.61

CICIDS2017

Total 145,306 –

78

Benign 105,326 –
Web Attack 1,476 71.36
DoS 21,586 4.88
Brute Force 5,236 20.12
Bot 865 121.76
Port Scan 10,817 9.74

Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnais-
sance, Shellcode and Worms. The data contains 47 feature at-
tributes and two label attributes. Data details are shown in Ta-
ble 1.

CICIDS2017: The CICIDS2017 data set contains data of normal
types and common attack types, similar to the data in the real
world. The data set collected five days of data, the first day only
contains normal type data, the other four days contain attack type
data. The implemented attacks include Brute Force FTP, Brute
Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and
DDoS. The training data contains 78 feature attributes and one
label attribute. Data details are shown in Table 1.

4.2. Evaluation metrics

In order to quantitatively evaluate the intrusion detection
system proposed in this study, we use Accuracy, Precision, F-
measure, Recall and AUC as evaluation metrics. Accuracy is the
ratio at which positive and negative samples are correctly clas-
sified. Recall represents the ratio of positive examples correctly
classified to samples divided into positive examples. Precision is
defined as the ratio at which positive examples are predicted cor-
rectly. F-measure is a relatively comprehensive evaluation index,
which is the weighted harmonic average of Precision and Recall.
ROC curves can be created by drawing TPR (true positive rate) on
the Y axis and FPR (false positive rate) on the X axis. AUC (area
under curve) is the area under the ROC curve. As a numerical
value, AUC can intuitively evaluate the quality of the classifier.
The larger the value, the better the classification performance.

Accuracy =
TP + TN

TP + TN + FN + FP
(18)

Precision =
TP

TP + FP
(19)

-measure =
(1 + β2) Pr ecision × Recall

β2(Pr ecision × Recall)
=

2 × TP
2 × TP + FP + FN

(20)

Recall = TPR =
TP

(21)

TP + FN
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PR =
FP

FP + TN
(22)

where TP, TN, FP, and FN are true positive, true negative, false
positive, and false negative, respectively. β is a coefficient de-
scribing the relative importance of precision and recall, and is
usually set to 1. The standard is determined based on the har-
monic mean between precision and recall. In this experiment, we
also set β to 1, that is, our final evaluation index is F1.

4.3. Experiment procedure

This study uses Keras and TensorFlow framework to achieve
model construction and experimental testing. The parameter set-
ting and processing process of each module are as follows.

As described in Section 3.1, the original network feature data is
preprocessed first, and then enters the feature extraction module.
KDDCUP99 and UNSW-NB15 data sets need one-hot encoding
for character data, which makes the data set sparse. Therefore,
we use DAN for feature extraction to eliminate the influence
of sparse data. There is no character data in the CICIDS2017
data set, and the sparseness is low. Therefore, this research did
not perform feature reduction on the data. We determined the
structure of DAN model by testing the final classification effect of
MLP. Since the KDDCUP99 data set is preprocessed to obtain 122
dimensional data with high dimensions, the hidden layer of the
DAN structure is set to 100 × 64×20 × 64×100 and the final
dimension reduction result is 20 dimensions. The dimension of
data in UNSW-NB15 data set is 47, so the hidden layer of DAN
structure is set to 32 × 20×32, and the final dimension reduction
result is 20 dimensions. The dimension reduced data is input into
the TACGAN module.

In KNN based undersampling, we set the K value to 5. Several
experiments show that the number of neighborhoods with k = 5
is a simple and effective method, and is sufficient to analyze the
distribution of three types of samples in the data set [51]. Based
on this, we take k = 5 as the neighborhood value for dividing
three types of samples.

The setting of super parameters in TACGAN is completed by
the combination of random grid search and manual selection.
Specifically, we determine the super parameters by verifying the
classification performance of MLP. The input of the generator
is a class label and a set of random noise z, and z conforms
to Gaussian distribution. In many experiments, it is found that
the experimental results are not sensitive to the dimensional
change of random noise z, so we set it as the standard value
f 100 (As shown in Fig. 7a). The generator and discriminator
lternate training round is 1, because no significant improvement
s observed for setting higher values. In this study, we need to
enerate discrete tabular data, so we design the hidden layer of
he generator as 128 × 256×512 fully connected dense layer.
xcept for the output layer, each layer in the generator uses
atch standardization with momentum of 0.8. In addition, we
se LeakyRelu activation function in all hidden layers and tanh
ctivation function in output layer. The hidden layer of the dis-
riminator is 100 × 64 fully connected dense layer. Considering
he insufficient training data of attack samples, a dropout of 0.2 is
dded to each layer to prevent overfitting. Like the generator, all
idden layers use LeakyRelu as the activation function. The last
ayer of the discriminator uses sigmoid as the ‘‘real or fake’’ clas-
ifier and softmax as the classifier of category label. The training
pochs of TACGAN is set to 20,000. Through the test, we found
hat the best effect can be achieved when the batch size is set to
6 (As shown in Fig. 7b). Fig. 7c shows the accuracy training curve
f UNSW-NB15 data. We can see that the final discriminator D
ill fit to 50%, thus losing the ability to discriminate real and fake
248
Fig. 7. Training results of different parameters.

samples. It can be judged that the training of TACGAN model is
completed. The final training results of the other two data sets
will also get similar training curves. Finally, for the generated data
filtering, we only select the data whose similarity difference SD
is within the range of [0,0.1] as the final experimental data.

4.4. Baseline methods

We compared the classification effect of ten kinds of data
including the original data. The introduction of each algorithm is
as follows:

• Original: Raw data without any processing.
• ROS(Random Oversampling): Without synthesizing new data,

the data is expanded by randomly copying minority class
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Table 2
Experimental results of binary classification. Among them, we compare nine algorithms including our method.
Methods KDDCUP99 UNSW-NB15 CICIDS2017

F1 Recall ACC F1 Recall ACC F1 Recall ACC

Original 0.9164 0.8481 0.8908 0.8875 0.8040 0.8612 0.9037 0.8922 0.9049
DAN 0.9281 0.8718 0.9048 0.9065 0.8403 0.8820 – – –
ROS 0.9287 0.8736 0.9054 0.8980 0.8214 0.8731 0.9160 0.9129 0.9163
SMOTE 0.9235 0.8665 0.8989 0.8980 0.8270 0.8722 0.8936 0.9176 0.8908
SMOTE+ENN 0.9291 0.8743 0.9059 0.9030 0.8329 0.8782 0.9182 0.8952 0.9204
ADASYN 0.9270 0.8719 0.9032 0.9265 0.8831 0.9047 0.9152 0.9103 0.9157
CGAN 0.9311 0.8785 0.9083 0.9125 0.8489 0.8892 0.9321 0.9185 0.9331
WGAN 0.9359 0.8862 0.9145 0.9114 0.8451 0.8882 0.9230 0.9082 0.9243
ACGAN 0.9297 0.8748 0.9066 0.9192 0.8707 0.8958 0.9334 0.9216 0.9343
MAGNETO 0.9435 0.9004 0.9239 0.9430 0.9656 0.9206 0.9583 0.9542 0.9585
IGAN-IDS 0.9377 0.8850 0.9171 0.9271 0.9114 0.9045 0.9548 0.9351 0.9557
Ours 0.9522 0.9138 0.9353 0.9439 0.9403 0.9239 0.9581 0.9479 0.9586
samples. Finally, the number of minority and majority classes
is the same, so as to obtain a balanced data set.

• SMOTE: By randomly generating new samples on the con-
necting line between the samples of adjacent minority
classes, the expanded samples are obtained.

• SMOTE+ENN: SMOTE+ENN is a hybrid method based on the
combination of nearest neighbor rule undersampling and
SMOTE.

• ADASYN: Adasyn method can adaptively synthesize new
samples according to the distribution of positive samples.
Fewer minority class samples are generated in easy classi-
fication areas, and more minority class samples are synthe-
sized in difficult classification areas.

• CGAN: Additional condition information is added to the gen-
erator and discriminator of the original GAN to realize the
condition generation model.

• WGAN: WGAN uses Wasserstein distance instead of JS diver-
gence as the optimization objective, and introduces gradient
penalty term, which can effectively solve the problems of
gradient disappearance and pattern collapse in the original
GAN training.

• ACGAN: The algorithm described in Section 3.4.1 above.
• Ours: The method proposed in this paper

.5. Discussion and analysis of experimental results

.5.1. Results of binary classification
In this part, we compare the binary classification results of

ormal data and attack data. Table 2 shows the comparison re-
ults between TACGAN-IDS and other methods. The results show
hat the performance of TACGAN-IDS on KDDCUP99, UNSW-NB15
nd CICIDS2017 data sets is better than other methods. As shown
n Table 2, the 12 methods include four traditional imbalanced
ata processing methods and five deep generative models. The
ther three kinds of data are raw data, DAN dimension reduction
ata and TACGAN-IDS processed data. For the final classifier, we
se multi-layer perceptron (MLP) classification model. As a deep
earning model, MLP has proved its excellent classification ability.

For the classification effect of the original data, MLP attains a
onsiderable performance, especially on F1 (0.9164 on KDDCUP99
nd 0.8875 on UNSW-NB15) and Accuracy (0.8908 on KDDCUP99
nd 0.8612 on UNSW-NB15). As a deep learning dimension reduc-
ion method, deep autoencoder network can effectively reduce
he data dimension and reduce the computational complexity.
he DAN model designed in this paper can effectively deal with
ata with high sparsity. It can be seen from Table 2 that F1, Recall
nd Accuracy of data processed by DAN have been improved.
mong them, F1 and Accuracy increased by about 1% ∼ 2%, Recall
ncreased by 3% ∼ 4%.

ROS, SMOTE, SMOTE+ENN and ADASYN are four common
ethods to deal with imbalanced data. The four methods have
249
certain effect on the expansion of tabular data. SMOTE method
can generate random samples between the connecting lines of
adjacent minority samples, so as to expand the samples.
SMOTE+ENN effectively undersampling the boundary data on
the basis of SMOTE, so as to further improve the classification
effect. ADASYN and SMOTE are similar algorithms, which can
also improve the classification effect. However, the traditional
oversampling methods start from the local neighborhood of the
sample points, and do not consider the minority class overall
distribution. Therefore, the data generated by these methods
cannot effectively fit the distribution of minority classes, which
makes the authenticity of the generated samples lack.

CGAN, WGAN and ACGAN are three deep generative models.
Deep generative model is to learn the true distribution of mi-
nority class from the global perspective, so as to generate more
realistic attack sample data. It can be seen from Table 2 that
the detection results of the three deep generative models are
generally better than the traditional methods. MAGNETO [49]
and IGAN-IDS [58] are two effective intrusion detection methods
based on GAN. As can be seen from the Table 2, compared with
IGAN-IDS, our method shows excellent performance on three data
sets. Compared with MAGNETO, our method has better perfor-
mance on KDDCUP99 and similar performance on UNSW-NB15
and CICIDS2017 data sets. Compared with the detection results of
the original unprocessed data, the performance of our proposed
TACGAN-IDS method has been greatly improved. On the KDD-
CUP99 data set, F1, Recall and Accuracy are improved by about
4%, 7% and 5% respectively. On UNSW-NB15 data set, F1, Recall
and Accuracy increased by about 6%, 14% and 6%, respectively.
The detection indexes on the CICIDS2017 data set were improved
by about 5%. In addition, we also give the comparison results of
AUC, as shown in Fig. 8. Compared with other methods, the AUC
value of TACGAN-IDS model is also improved effectively. AUC
comparison results show that our method is more competitive
for improving the overall classification effect of the data.

4.5.2. Results of multi-class classification
In order to make a more objective and accurate evaluation of

the method proposed in this paper, we use the Precision, AUC
and Accuracy to make a more objective evaluation of TACGAN-IDS
method. In addition, in order to get more accurate compari-
son results, we use Macro-F1 and Macro Recall to compare the
multi-class classification results.

Table 3 shows the comparison of experimental results of
multi-class classification on KDDCUP99 data set. Compared with
binary classification, multi-class classification data is more com-
plex, and there may be class overlap between each two classes
of data. It can be seen from Table 3 that ROS, SMOTE, SMOTE
+ ENN and ADASYN still have some improvement effect. CGAN,
ACGAN, MAGNETO and IGAN-IDS are better than the four tra-
ditional methods. Due to the unlabeled learning, WGAN is easy



H. Ding, L. Chen, L. Dong et al. Future Generation Computer Systems 131 (2022) 240–254

C
T

c
T
t
c
s

4

I
w
N
t
I
a
r
C
p
t
A
w
d
T
d
s
o
I

Fig. 8. AUC comparison results of three data sets.

to introduce noise data in the boundary area, so its Precision is
lower than other methods. Finally, the Accuracy and Precision of
TACGAN-IDS method have reached the best effect, and the AUC
value is slightly lower than that of MAGNETO and IGAN-IDS.

Macro-F1 and Macro-Recall can evaluate the multi-class classi-
fication results more effectively. Macro-F1 needs to calculate the
F1 score of each class first, and then get the F1 score of the whole
sample by calculating the average value. Because the sample size
of U2R and R2L attack data in the original data is very low and
cannot be effectively trained, the calculated Macro-F1 value is
low. The results of multi-class data classification for five kinds of
data are shown in Fig. 9. The Macro-F1 and Macro-Recall of four
traditional methods and five deep generative models have been
improved to varying degrees. Because our method generates data
more in line with the real sample distribution, so that the data
set achieves class balance, so we get a better classification effect.
250
Table 3
Comparison of experimental results of multi-class classification on KDDCUP99
data set.
Methods KDDCUP99

Precision AUC ACC

Original 0.8093 0.8354 0.9115
ROS 0.8201 0.8663 0.9265
SMOTE 0.8417 0.8554 0.9173
SMOTE+ENN 0.8418 0.8777 0.9280
ADASYN 0.8382 0.8695 0.9271
CGAN 0.8450 0.9007 0.9283
WGAN 0.8165 0.8629 0.9261
ACGAN 0.8526 0.8744 0.9245
MAGNETO 0.8503 0.9362 0.9234
IGAN-IDS 0.8478 0.9403 0.9248
Ours 0.8556 0.9234 0.9297

Fig. 9. Comparison of results between Macro-F1 and Macro-Recall.

ompared with the original data, Macro-F1 and Macro-Recall on
ACGAN-IDS are improved by about 5% and 8% respectively.
The detection results of binary classification and multi-class

lassification reported above show that the performance of
ACGAN-IDS is better than other competitors. We can conclude
hat TACGAN-IDS can effectively deal with imbalanced data by
ombining feature dimension reduction, undersampling and over-
ampling.

.5.3. Experimental results of single class imbalanced data
In order to further demonstrate the effectiveness of TACGAN-

DS method in dealing with data with different imbalanced rates,
e conducted experiments on 9 types of attack data in UNSW-
B15 data set. As can be seen from Table 4, in general, the smaller
he IR value, the better the detection result, and the larger the
R value, the worse the detection effect. Among the 9 kinds of
ttacks, the detection effect of Generic data is the best, and F1,
ecall and AUC reach 0.9944, 0.9945 and 0.9952 respectively.
ompared with the detection results of the original data, the pro-
osed method has an obvious improvement effect, especially for
he poorly detected attack data. For example, the F1, Recall and
UC of Fuzzers data are 0.7732, 0.9943 and 0.9034 respectively,
hich has been greatly improved compared with the original
ata. Since the sample size of worms data is extremely small,
ACGAN cannot learn more effectively. Although the worms data
oes not get the ideal detection effect, the improvement effect is
till considerable compared with the original data. In addition, in
rder to more clearly show the improvement effect of TACGAN-
DS on the three indicators, we compared the mean value of each
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Table 4
Comparison of detection results of single attack category in UNSW-NB15.
Attack IR Original Ours

F1 Recall AUC F1 Recall AUC

Analysis 202.36 0.7771 0.7045 0.8503 0.8317 0.7140 0.8569
Backdoor 234.99 0.9053 0.8270 0.9135 0.9367 0.8917 0.9445
DoS 33.50 0.8677 0.8717 0.9337 0.9318 0.9676 0.9719
Exploits 12.31 0.9253 0.8661 0.9313 0.9441 0.9692 0.9596
Fuzzers 22.60 0.3914 0.2572 0.6193 0.7732 0.9943 0.9034
Generic 7.26 0.9944 0.9945 0.9952 0.9865 0.9964 0.9897
Reconnaissance 39.19 0.8310 0.7161 0.8573 0.8553 0.8973 0.9298
Shellcode 362.43 0.3886 0.2427 0.6212 0.4155 0.8164 0.8868
Worms 3113.61 0.2666 0.1538 0.5769 0.4926 0.3846 0.6921
*Mean – 0.7053 0.6260 0.8110 0.7964 0.8479 0.9039

Notes: ‘‘Mean’’ is the mean value of the results of each test index.
Fig. 10. Comparison of mean results.

Fig. 11. Comparison results under different IR. (a), (b), (c) and (d) respectively
represent the comparison results of F1, recall, AUC and accuracy, where the
abscissa is the random sampling ratio and the ordinate is the test results of
each index.

indicator. As shown in Fig. 10, compared with the original data,
F1, Recall and AUC of TACGAN-IDS increased by about 9%, 22%
and 9% respectively.

4.5.4. TACGAN-IDS with different imbalance rates
In this section, we use different imbalance rates between

ajority and minority classes to evaluate the sample sampling
erformance of TACGAN-IDS. Different imbalance rates are ob-
ained by random undersampling of minority classes. We take
he Probe attack samples and normal samples in KDDCUP99 data
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Fig. 12. ROC curves under different IR, where Original represents the original
data, and 100 and other values represent the value of sampling rate.

set as examples for verification experiments. There were 4,107
samples in the original Probe data, and only 2054 samples were
retained after 50% undersampling. The imbalance rate of Probe
samples increased from 23.69 to 47.36. We only changed the
imbalance rate of the training set, and the test set remained
intact.

Fig. 11 shows the detection results of TACGAN-IDS with dif-
ferent IR, where Original represents the experimental results of
unexpanded original data. It can be seen from the four detection
indexes that the detection performance of TACGAN-IDS is rela-
tively stable under different imbalance rates. Because TACGAN
can generate minority class samples, the detection system can
reduce the impact of the increase of imbalance rate. However,
with the increase of imbalance rate, the four detection indexes
decreased slightly. As our expectations, when only a part of sam-
ples are used for TACGAN training, the complete distribution of
Probe data cannot be learned effectively. Therefore, all indicators
have a certain downward trend. It is worth noting that from
the four detection indexes and ROC curve (Fig. 12), TACGAN-IDS
still shows good performance even when the non-equilibrium
rate becomes twice the original. In general, TACGAN-IDS still has
high robustness and good detection performance when the class
imbalance is serious.

4.5.5. Ablation study
In order to make a more thorough analysis of the TACGAN

model, we conducted an ablation study to analyze the effective-
ness of each module. Taking UNSW-NB15 as the experimental
data, the details of ablation study are as follows.
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Table 5
Results of the ablation study.
Methods Module F1 Recall AUC ACC

DAN US TACGAN DF

(1) MLP – – – – 0.8875 0.8040 0.8936 0.8612
(2) DAN(O)

√
– – – 0.9065 0.8403 0.9056 0.8820

(3) TACGAN(O) – –
√

– 0.9230 0.9215 0.8805 0.8953
(4) DF(N)

√ √ √
– 0.9369 0.9305 0.9058 0.9147

(5) US(N)
√

–
√ √

0.9289 0.9352 0.8841 0.9026
(6) TACGAN-IDS

√ √ √ √
0.9439 0.9403 0.9146 0.9239

Notes: MLP means to classify the original data using multi-layer perceptron; DAN (O) indicates that only the deep
autoencoder network is used for dimensionality reduction, and then MLP is used for classification; TACGAN (O)
means that only the TACGAN module is used to expand the original data, and then MLP is used for classification;
DF(N) indicates that the data filtering module in TACGAN-IDS is removed, and the other modules remain unchanged;
US(N) means that the undersampling module in TACGAN-IDS is removed, and the other modules remain unchanged;
TACGAN-IDS indicates that a complete system module is used.
I
r
W
Z

The results of ablation experiment are shown in Table 5. Model
2) represents the experimental results using only DAN modules.
omparing model (2) with model (1), we can conclude that DAN
odule is helpful to improve the performance of IDS. Through the
omparison between module (3) and module (1), it is proved that
ACGAN can generate effective minority samples. The detection
esult of module (4) shows that the detection performance of IDS
ill be reduced when the DF module is removed from TACGAN-

DS. This is because the DF module can remove the noise in the
enerated data, and the experimental results also show the ef-
ectiveness of the DF module. Similarly, the experimental results
fter removing the undersampling module are shown in module
5). The results show that removing DF module will affect the
etection performance of IDS. The US module can undersampling
he majority class in the overlapping area to balance the number
f majority class and minority class samples, so as to avoid the
ccurrence of decision boundary offset. From the above analysis,
t can be seen that the modules in TACGAN-IDS can effectively
mprove the detection performance of the system.

. Conclusions and future work

Intrusion detection is one of the key technologies to protect
etwork security. However, the imbalanced learning problem
ill seriously affect the performance of intrusion detection sys-
em. Based on this, we propose a new intrusion detection sys-
em framework, namely TACGAN-IDS. Firstly, a feature extraction
odule is introduced into TACGAN-IDS to reduce the influence of
parse data on detection performance. Secondly, we design an un-
ersampling mechanism based on K-nearest neighbor to balance
he samples in the overlapping region. Finally, we design an effec-
ive TACGAN model to generate minority class data. Information
oss is introduced into the generator of TACGAN model, which
akes the generated minority class data more consistent with the
ample distribution of the original data. In addition, at the end of
he TACGAN model, a data filtering module is introduced to filter
he noise data in the generated samples. The experimental results
how that our method is better than the other six imbalanced
ata processing methods. Through experiments on attack data
ith different imbalanced rates, the results show that TACGAN-

DS still has a good effect on data with high IR. The research
n ablation also shows the powerful ability of each module in
ACGAN-IDS against imbalanced intrusion detection.
Although this work verifies the effectiveness of TACGAN-IDS

or imbalanced data processing, it does not design a more ef-
ective classification model. Therefore, in the future work, we
onsider designing an effective deep learning classification model,
ombined with the method in this paper, so as to further improve
he detection performance (For example, attention mechanism is

dded to the deep learning model to enhance the overall semantic
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understanding of network attributes). Deep reinforcement learn-
ing effectively combines the perception ability of deep learning
with the decision-making ability of reinforcement learning, and
can also be considered to be added to the research of intrusion
detection. In addition, although this study considers the impact of
class overlap and designs the corresponding solutions, we think
it needs to be improved. Therefore, in future research, we will
consider designing relevant clustering algorithms to achieve more
effective under sampling.
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