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This paper presents a multi agent-based simulation framework for modeling spatial distri-
bution of plug-in hybrid electric vehicle ownership at local residential level, discovering
‘‘plug-in hybrid electric vehicle hot zones’’ where ownership may quickly increase in the
near future, and estimating the impacts of the increasing plug-in hybrid electric vehicle
ownership on the local electric distribution network with different charging strategies.
We use Knox County, Tennessee as a case study to highlight the simulation results of
the agent-based simulation framework.
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1. Introduction

The electric recharge capability of plug-in hybrid electric vehicles (PHEVs) offers promise to replace a significant portion
of the US’s current fuel-based light vehicle fleet before electronic vehicle battery recharging infrastructure is fully deployed
nationwide. The general assumption is that the electric power grid is built to support peak loads and, as a consequence, suf-
fers from low asset utilization rates in off-peak periods. However, this assumption does not consider that vehicle users will
most likely charge their vehicles when convenient, rather than waiting for power grid off-peak periods.

The PHEV charging loads are computed based on charging strategies that the future vehicle fleet might adopt. Hadley and
Tsvetkova (2009), for example, find that most US regions would need to build additional generation capacity to meet the
added electric demand when PHEVs are charged in the evening, while Lilienthal and Brown (2007) showed an uncontrolled
charging strategy of PHEVs would place increased pressure on power grid but no additional generation capacity would be
required if PHEVs charging cycles started in the off-peak periods. Equally, Letendre and Watts (2009) concluded that vari-
ability in charging times for vehicles may have a critical impact on the local electric grid infrastructure.

These efforts, however, ignore the possibility of spatially variable PHEV penetration in residential areas. Given the vehicle
penetration rate is expected to vary with household demographic and socioeconomic attributes such as income, travel dis-
tance, age, household size, education, the variation of these household demographic attributes in residential areas will gen-
erate PHEV penetration rate patterns. There may be specific points along some electric distribution lines that face congestion
if local patterns of electricity demand change significantly because of PHEV recharging. As a result, the electrical grid sub-
stations will be more sensitive to the usage patterns of a few customers. Hence in a region the overall electric generation
and grid capacity may be under-utilized but if too many consumers on a given circuit recharge their plug-in vehicles simul-
taneously, it could increase peak electric demand locally causing system disruptions and require upgrading of the electric
distribution infrastructure.
. All rights reserved.
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Here we develop an agent-based framework for modeling spatial distribution of PHEV household adoption in residential
areas, evaluating the impacts of vehicles charging load on a residential electric distribution network with different charging
strategies, and discovering ‘‘PHEV hot zones’’ where PHEV ownership may quickly increase in the near future. We use Knox
County, Tennessee as a case study to show the simulation results of an agent-based model (ABM) framework.
2. Agent-based PHEV ownership model

Existing PHEV adoption and market penetration models provide an estimate of future vehicle market share and percent-
age of vehicle at broad geographic scales. To understand the PHEV charging load impact on a local residential distribution
network, it is necessary to build a vehicle ownership distribution model at such high resolution level. The PHEV ownership
distribution pattern in a residential community is determined by the (choice) behavior of individual households for new
vehicle selection. Since different demographic attributes of individual household can affect the household vehicle purchase
decision, the probability of an individual household choosing a PHEV as their next new vehicle is likely different. It is useful,
therefore, to develop an explicit vehicle ownership distribution model at spatially high resolution that reflects the individual
household’s PHEV choice at local scale.

Social units (e.g., individuals, households, firms, or nations) now form the basis of many theories of group phenomena
that underlie computational models of global structures produced by their interactions (Lazer et al., 2009). Agent-based
modeling (ABM) explores complex social macro dynamic behaviors emerging from the interactions of autonomous and
interdependent individual actors (agents) within this approach (Epstein, 2006). This models social structures from the ‘bot-
tom-up’ by simulating individuals with virtual agents and creating emerging organizations from the operation of rules that
govern interactions among agents.

Like many other social phenomena, household level PHEV adoption or ownership distribution has a spatial–temporal
dimension and involves dynamic decisions made by individuals. We use an ABM to combine household demographic and
socioeconomic characteristics of Knox County with nationwide vehicles sale, cost and energy cost prediction data from
US Energy Information Administration’s Annual Energy Outlook 2010 report for scenario driven forecasting of PHEV owner-
ship distribution in Knox County households for 2011–2020.

We use a few simple, theory-based logical rules to guide the behavior and decision of the individual agents. The interac-
tions of individual households in the model produce the emerging PHEV ownership patterns. In addition, individual house-
holds in the ABM are able to make dynamic decisions based on changing information, such as gasoline price, existing PHEV
ownership and government policies. In this agent-based household PHEV ownership distribution model, we have integrated
a consumer choice model (Lin and Greene, 2010) with University of Michigan Transportation Research Institute (UMTRI)
model (Sullivan et al., 2009) for estimating the time when consumers start searching for a new car and a stigmergy-based
neighborhood effect model (Cui et al., 2009) for estimating the probability of consumer’s selection for different PHEV.

The consumer vehicle choice probability model is based on consumer’s socioeconomic attributes, the cost and perfor-
mance of the vehicle, gasoline and other energy cost, and the government policies. The core of this model is the Nested Mul-
tinomial Logit (NMNL) module that estimates the users’ choice probability on 13 kinds of advanced vehicle technologies. In
this model, the US market is divided into 1458 market segments and the market share of technologies is aggregated from the
market segments into the national level. The model is capable of estimating the consumer’s vehicle choice probability results
from 2005 to 2020. Since our interest is estimating the ownership distribution of kinds of PHEV and their impact on local
community power supply, we used four categories to represent the domain of advanced vehicles consumer can choose from
(i.e., PHEV-10, PHEV-20, PHEV-40 and others, which include hybrid electric vehicles and traditional Internal Combustion En-
gine (ICE) vehicles) rather than using 13 advanced vehicle technologies listed in the original model. This consumer choice
model is used as the individual agent decision rule for selecting the vehicle from available PHEV choices. The model can
be represented in following mathematical equations.
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where i is the household index, j is the vehicle index, k is the index of all other vehicles, a is the index of observed household
and vehicle attributes, A is the household attributes that have correlation with the probability of consumer’s decision for
choosing vehicle j, xa is the attributes of household and vehicle, and b is the parameter determining the impact fact of
the vehicle attributes to consumer’s choosing.

On the other hand, the consumer transportation budgets serve a major role in UMTRI model (Sullivan et al., 2009) for esti-
mating the time when agents start to actively search for a new vehicle. According to the description of UMTRI model, all
consumers will stay within their consumer transportation budgets which are comprised of fixed and variable terms as
follows:
Budget ¼ C1þ C2þ C3 ð2Þ
where C1 is the monthly vehicle payment, C2 is the monthly fuel cost and C3 is the vehicle maintenance cost.
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In our agent-based household vehicle ownership model, the UMTRI model is used for modeling the agent household’s
decision to buy another car. For every time period, the household agents will review their transportation budget status
and decide whether or not it is time to buy another vehicle. We augmented the consumer vehicle choice model with a
‘‘neighborhood effect’’. Epstein et al. (2010) and Sullivan et al. (2009) have used the neighborhood effect as one attribute
for predicting the consumer’s vehicle choice. But how the ‘‘neighborhood effect’’ numerically contributes on the consumer’s
decision for their new vehicle is still an un-answered question. Here we used the individual behavior or contribution is de-
scribed in the following equations:
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Pd is the positive effect for one kind of vehicle. For this kind of vehicle ownership in neighborhood or other social network
connected by areas, the positive effect Pd is incremented by a constant, c, as shown in Eq. (3). At the same time, the positive
effect Pd will decay as time passes. The decay rate e�s will be applied on Pd every time cycle as shown in Eq. (4). Eq. (5) de-
scribes the vehicle d’s probability qd of being chosen. N is the number of advanced vehicle technologies available for consum-
ers. The constants F and K are used to tune the consumer’s vehicle selection behaviors.

Individual households with different characteristics are represented by agents. The combination of the three decision
models described above will help each agent make an independent choice about whether to buy a PHEV or not and the kind
of PHEV to buy. If each agent household is geo-located, the global behavior about the spatial distribution PHEV ownership
can be generated from the interaction and independent decision of individual agents in the simulation.
3. Synthetic household characteristics and locating process

Accurately generating PHEV ownership distribution in a local community needs high fidelity household characteristics
and individual locations that can be used in the ABM simulation for estimating each individual household (agent) vehicle
choice behavior. The high fidelity input data for agent-based simulation is the primary assurance for the simulation to gen-
erate meaningful results. Collecting the individual household characteristics and location information of the targeted com-
munity is extremely important for understanding the local community PHEV distribution and their impact on local electric
distribution network. Nevertheless, because of ineffective survey based strategy (privacy concerns, high cost, and low re-
sponse rate) obtaining high resolution, spatially explicit household and personal characteristics are usually challenging.
One solution is using population synthesizers to reconstruct methodologically rigorous estimates of household characteris-
tics and their location from survey data and high-resolution geospatial data, such as Public Use Microdata Sample (PUMS)
(American Community Survey, 2010), Census Summary Files 3 (SF3) (US Census Bureau, 2003), Census Transportation Plan-
ning Products (CTPP) (US Department of Transporation, 2011) and high resolution (90 m) population distribution data Land-
Scan USA (Bhaduri et al., 2007).

Most of simulations suffer from a shortage of accurate data of local residency. Without accurate data, the usability of the
results generated from the simulation is limited. The first step is to allocate local household data for the simulation. Here, the
virtual Knox County households are generated from the copula-based household synthesizer, in which the households have
the same attributes with known local distributions (i.e., SF3 statistics) at each census block groups (BGs) while having similar
inter-variable correlations as observed in the PUMS and distributed throughout the study area by integrating LandScan USA.1

Fig. 1 shows the study area’s 234 BGs and three PUMAs (i.e., 01301, 01302, and 01400). Since the PUMA and BGs bound-
aries are not always co-located in Knox County, when one BG corresponds to multiple PUMAs, it is assigned to the largest
PUMA for simplification. Overall, 190,965 virtual households (368,666 members) are synthesized. Considering PHEV pur-
chasing and usage, several potentially relevant household demographic variables are extracted, including: household income
in 1999, number of household member, number of workers, number of vehicles, household highest educational attainment,
and household travel time to work, derived from individual records.

Since the household is assumed to be the decision-making unit for automobile purchasing, only family and non-family
households are considered in this paper (i.e., group quarters are excluded). For each PUMA, a unique copula-based synthe-
sizer is constructed. Copulas have been a novel statistical tool that can be applied to construct multidimensional probability
model with arbitrary marginal distributions in a flexible manner. Recently application of copulas in transportation can be
copula-based virtual household synthesizer is based on detailed demographic samples from PUMS that are based on a 5% sampling rate and are
in geographical units named Public Use Microdata Areas (PUMAs). The PUMA is determined in a way that it must contain approximately 10,000

olds from a population of 200,000, so the privacy of each survey respondent is well-protected. However, it also results in coarse spatial extent and hence
dvantage for regional-specific studies. Local summary tables are obtained from SF3, which are in the geographical units called Block Groups (BGs). The
rmation is based on the Census long forms (16.7% sampling rate) and further adjusted by short forms data (100% sampling rate). Here, the copula-based

households are derived from PUMS and then locally fitted to SF3 summaries.



Fig. 1. Illustration of three PUMAs and 234 census block groups in the Knox County.
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found in (Spissu et al., 2009). The marginal distributions uj ¼ Fxj
ðxjÞ ¼ 1; . . . ;6 are derived by non-parametric kernel density

functions, in which the discrete–continuous transformation is considered for the average household income, household size,
number of workers, number of vehicles, educational attainment, and household travel time to work. The correlation matrix
R is computed by Spearman’s r, and then corrected for formatting issues with the tolerance e set at 0.002. The Gaussian cop-
ulas CU1 ;...Ud

are then used to synthesize virtual households.
At the local level, Form SF3 summaries for each BG are collected and treated as constraints. However, not every variable

has a corresponding local summary and some variables have different universes and to avoid making extraneous assump-
tions, we only take income and person numbers summaries as two local constraints. Following the local fitting procedures,
virtual households are assigned for each BG.

However, since the minimum spatial resolution dealt with by the household synthesizer is the block groups, it might be
difficult to study the microscopic spatial distribution of PHEV in the block groups. Thus, another procedure to place individ-
ual synthetic households at the specific map coordinates has been developed, employing the personal travel time data of
workers to work from SF3, number of workers commuting between census tracks from CTPP, and high resolution (90 m)
population distribution data with LandScan USA.

4. The ABM simulation platform

We used the NetLogo multi-agent simulation tool to develop our model. In this tool, agents move around in a virtual
world and interact with other agents. There is no centralized control or coordination of the agents’ actions. Agents are
responsible for maintaining their own state and performing their own actions asynchronously and as rapidly as they can.
In such agent-based simulation, the overall behavior of the system is an emerging property of the individual, independent
interactions of the agents.

One agent represents one household. Each household agent is created with certain attributes extracted from the synthetic
household data discussed in Section 3. Each agent has specific rules of behavior to determine how the households select
when and what kind of vehicle. There are 190,965 households in the Knox County, which means 190,965 agents are created
in this simulation platform. Once all agents are initialized, the model proceeds according to internal clocks. Essentially, all
agents are engaged in PHEV selection activity during each time period (1 calendar month). Simulated household and its
geo-locations, as well as the current status of the vehicle (such as the age of vehicle and the mileage) are updated each sim-
ulation period (1 calendar month).

5. Experimental design and results

We use the two scenarios, Base Case and FreedomCARGoals Case defined in Lin and Greene (2010), to illustrate the house-
hold PHEV distributions in the Knox County. The same energy prices are used in the two cases. We use Lin and Greene’s out-
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put for PHEV distribution model calibration to confirm that the proposed model generates similar estimated vehicle sales
each year from 2011 to 2020. We aggregate the individual household PHEV based on the census block group (234 BGs in
the Knox County) in which individual households are located. By using ownership distribution model and the synthetic
household data, we are able to estimate the vehicle type for each household in each simulation month. For demonstrating
the vehicle distribution in the local community and discovering the ‘‘PHEV hot zone’’ – the highest PHEV ownership concen-
tration – we aggregate the individual household PHEV based on the BGs. The distribution of the PHEV in Knox County for
2020 based on the two scenarios is seen in Fig. 2. We only display the distributions of ownership.
Fig. 2. PHEV distributions for Basic and FreedomCARGoals scenarios (2020).



Fig. 3. Charging load for uncontrolled PHEV charging system.
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The height of the bars in different BGs represents the number of PHEVs in the corresponding BGs. The longer the bar is,
the more vehicles are in the corresponding BGs. As shown in Fig. 2, the FreedomCARGoals scenario will have a higher PHEV
market penetration than Base Case. However, both have very similar vehicle distribution patterns in Knox County; that is,
both scenarios indicate that the southwest portion of the county (which is the Town of Farragut) will have the highest PHEV
concentration. This area is considered as the ‘‘PHEV hot zone’’. We also see that PHEV-40 ownership within the Base Case is
higher than that for the FreedomCARGoals scenario. The possible reason is because under the FreedomCARGoals scenario,
more households are capable and willing to buy basic level PHEV vehicle, PHEV-10. Because of the neighborhood effect, more
households are attracted to buy a PHEV-10 instead of a PHEV-40 which is more expensive than PHEV-10.

Using the PHEV residence ownership distribution result for the FreedomCARGoals Scenario we are able to conduct pre-
liminary analysis of battery charge load impacts on the local electric distribution network. PHEVs under this Scenario will
reach 8192 in 2020 in the county. Taking the worst scenario of all vehicles simultaneously recharging during the grid peak
time, each vehicle will consume 1.45 kW during the recharge, with the peak load for all PHEVs being 11,878 kW. In most
cases, because drivers have different travel patterns and charge time schedules, the maximum load pattern for uncontrolled
evening charging will be similar to Fig. 3. Under this scenario, it is reasonable to assume that the vehicle owner begins charg-
ing the vehicle upon arriving at work in the morning and upon returning home from work. The black area represents the
charge load at work and gray area indicates the load while at driver’s residence. Charging start times are decided by the PHEV
driver’s commute time from work to home and from home to work. The PHEV-10, PHEV-20 and PHEV-40 need to be charged
from 2 to 6 h continuously.

Four census block groups (46, 57, 58 and 62) with 2670 vehicles each, from the 234 BGs in Knox County, have the highest
estimated PHEV penetration under the FreedomCARGoals Scenario. According to the simulation output, the evening peak
charging load for these BGs can reach 3625 kW, 32.6% of the vehicle charging load generated by the fleet in the Knox County.
These BGs can be considered as the ‘‘PHEV hot zones’’.

6. Conclusions

In this paper, we have modeled the high-resolution spatial distribution of vehicle ownership in local residential areas at a
county scale and evaluated the impacts of PHEVs charging load on the residential electric distribution network. Our approach
for generating synthetic household characteristics and locating them is described. Knox County, TN is used as a case study to
show the simulation results of the proposed ABM framework. The variation of household attributes such as income, travel
distance, age, household member, and education, for residential areas may generate different vehicle market penetration
rates. Residential neighborhoods, where multiple PHEV consumers share a given circuit to recharge their plug-in vehicles,
could increase peak demand locally and require utilities to upgrade the distribution infrastructure.

Acknowledgements

This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Lab-
oratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy under Contract No. DE-AC05-00OR22725. This
paper has been authored by employees of UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the US Department of
Energy. Accordingly, the US Government retains and the publisher, by accepting the article for publication, acknowledges
that the US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for US Government purposes.

References

American Community Survey, 2010. Public Use Microdata Sample (PUMS) Files. <http://factfinder.census.gov/servlet/DatasetMainPageServlet?_
program=ACS&_submenuId=datasets_2&_lang=en>.

Bhaduri, L.B., Bright, E., Coleman, P., Urban, M., 2007. LandScan USA: a high-resolution geospatial and temporal modeling approach for population
distribution and dynamics. GeoJournal 69, 103–117.

Cui, X., Beaver, J., Treadwell, J., Potok, T., Pullum, L., 2009. A stigmergy approach for open source software developer community simulation. In: Proceedings
of 12th International Conference on Computational Science and Engineering, Vancouver.

http://factfinder.census.gov/servlet/DatasetMainPageServlet?_program=ACS&amp;_submenuId=datasets_2&amp;_lang=en
http://factfinder.census.gov/servlet/DatasetMainPageServlet?_program=ACS&amp;_submenuId=datasets_2&amp;_lang=en


554 X. Cui et al. / Transportation Research Part D 17 (2012) 548–554
Epstein, J.M., 2006. Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton.
Epstein, M., Pellon, M., Besaw, L., Grover, D., Rizzo, D., Marshall, J., 2010. An agent-based model for estimating consumer adoption of PHEV technology. In:

Proceedings of 89th Transportation Research Board Annual Meeting, Washington, DC.
Hadley, S., Tsvetkova, A., 2009. Potential impacts of plug-in hybrid electric vehicles on regional power generation. The Electricity Journal 22, 56–68.
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., 2009. Social science: computational

social science. Science 323(5915), 721–723.
Letendre, S., Watts, R., 2009. Effects of plug-in hybrid electric vehicles on the Vermont electric transmission system. In: Proceedings of 88th Transportation

Research Board Annual Meeting, Washington, DC.
Lilienthal, P., Brown, H., 2007. Potential Carbon Emissions Reductions from Plug-in Hybrid Electric Vehicles by 2030. National Renewable Energy Laboratory,

Golden.
Lin, Z., Greene, D., 2010. A plug-in hybrid consumer choice model with detailed market segmentation. In: Proceedings of 89th Transportation Research

Board Annual Meeting, Washington, DC.
Spissu, E., Pinjari, A.R., Pendyala, R.M., Bhat, C.R., 2009. A copula-based joint multinomial discrete–continuous model of vehicle type choice and miles of

travel. Transportation 36, 403–422.
Sullivan, J., Salmeen, I., Simon, C., 2009. PHEV Marketplace Penetration: An Agent Based Simulation. Transportation Research Institute at University of

Michigan, Ann Arbor.
US Census Bureau, 2003. Summary File 3 (SF3). <http://www.census.gov/census2000/sumfile3.html>.
US Department of Transportation, 2011. Census Transportation Planning Products. <http://www.fhwa.dot.gov/ctpp/>.

http://www.census.gov/census2000/sumfile3.html
http://www.fhwa.dot.gov/ctpp/

	Simulating the household plug-in hybrid electric vehicle distribution  and its electric distribution network impacts
	1 Introduction
	2 Agent-based PHEV ownership model
	3 Synthetic household characteristics and locating process
	4 The ABM simulation platform
	5 Experimental design and results
	6 Conclusions
	Acknowledgements
	References


