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a b s t r a c t

Applying the classification approach in machine learning to medical field is a promising direction as
it could potentially save a large amount of medical resources and reduce the impact of error-prone
subjective diagnosis. However, low accuracy is currently the biggest challenge for classification. So far
many approaches have been developed to improve the classification performance and most of them are
focusing on how to extend the layers or the nodes in the Neural Network (NN), or combining a classifier
with the domain knowledge of the medical field. These extensions may improve the classification
performance. However, these classifiers trained on one datasets may not be able to adapt to another
dataset. Meanwhile, the layers and the nodes of the neural network cannot be extended infinitely
in practice. To overcome these problems, in this paper, we propose an innovative approach which is
to employ the Auto-Encoder (AE) model to improve the classification performance. Specifically, we
make the best of the compression capability of the Encoder to generate the latent compressed vector
which can be used to represent the original samples. Then, we use a regular classifier to perform
classification on those compressed vectors instead of the original data. In addition, we explore the
classification performance on different extracted features by enumerating the number of hidden nodes
which are used to save the extracted features. Comprehensive experiments are conducted to validate
our proposed approach with the medical dataset of conjunctivitis and the STL-10 dataset. The results
show that our proposed AE-based model can not only improve the classification accuracy but also be
beneficial to solve the problem of False Positive Rate.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

To become a qualified physician, one needs a lot of prac-
tice. However, diagnosing disease is still an extremely time-
consuming and error-prone process even for an experienced
physician. Thus, many researchers attempt to employ Artificial
Intelligence models (e.g., classifiers) to diagnose the disease [1–
4]. Classification is a technique where a specific model is trained
by using a set of samples with labels to identify which categories
a new sample belongs to. Currently, one of the most popular
classifiers is the Neural Network (NN) [5] which classifies the
samples by capturing different features of the data as samples
belonging to the same category usually have the same features.
The NN model belongs to the Nature-Inspired community [6],
and it has been widely applied to a variety of areas such as
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biology [7], eco-hydrological monitoring [8], web spam detec-
tion [9], traffic [10,11], ecology [12]. However, there are still some
fundamental issues needing to be addressed. For example, one of
the biggest challenges is the low accuracy when the NN model is
applied to some certain domains such as bio-mechanics [13], time
series [14] and disease diagnosis [4]. Taking the conjunctivitis as
an example, the traditional classifiers (e.g., Decision Tree [15],
Random Forest [16], Naive Bayes [17] and K-Nearest Neighbors
(KNN) [18]) classify samples using pixel-by-pixel distance mea-
sure to calculate the accuracy in the image dataset. However,
these models belong to the linear classifier, and they could in-
correctly view the fake sample as a correct one [19] if a healthy
sample contains a variety of pixel-level artifacts. This is often the
case because the healthy eyes could also contain the congestion
which may be caused by insufficient sleep or influenza. Such
the eyes could be close to the diseased ones but far from the
healthy eyes when calculating their pixel-distance. If the classifier
incorrectly recognizes a person without conjunctivitis (supposing
the one got hypertension) as infected, it would deteriorate the
hypertension as the medicine for treating conjunctivitis is usually
adrenaline which could increase the blood pressure.
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In general, most nature-inspired algorithms (e.g., genetic al-
gorithm [20], particle swarm optimization [21] and ant colony
algorithm [22]) are mainly focusing on the path planning or
dispatch domain, only Neural Network (NN) has been mainly
applied to the classification task. The NN model mimics the brain
to analyze and process the information. One of the interesting
characteristics for the NN model is the learning capability to
unknown objects. It can automatically find out what kind of
features are important, and it directly transforms the input into
a prediction. Although the NN can also extract the features as
the Auto-Encoder, they have different extraction strategy. Auto-
Encoder belongs to unsupervised learning model while the NN
belongs to supervised learning model. For the latter one, it usually
utilizes the label information to learn the corresponding features
which may or may not bu useful to the classification [23]. For
example, the class ‘car’ and ‘ship’ hold different backgrounds
(e.g., highway for ‘car’ and sea for ‘ship’) in the CIFAR10 dataset.
Since they belong to different classes, the label may mark the
background when the classifier extracts the background as the
salient features such that the label would match the background
rather than the real object. In this way, we may get a low
accuracy. The detailed results are demonstrated in the Section
experiments.

To address such a challenge, this paper explores the idea to
apply the unsupervised learning model, the Auto-Encoder (AE)
model, to improve the classification performance. The unsuper-
vised learning model can remain the outline information of an ob-
ject and removes redundant noise information. An Auto-Encoder
is a type of artificial neural network, and it usually consists of
two components, viz. an Encoder and a Decoder. The Encoder
can encode the input into some latent compressed vectors and
the input can also be reconstructed by those latent vectors with
Decoder. The aim of AE is to extract the information from the
data or reduce dimensionality of the data. Recently, it has been
used to generate simulation data, especially for its extended
versions, such as Variational Auto-Encoder (VAE) [24] and Ad-
versarial Auto-Encoder (AAE) [25]. The key of Auto-Encoder is to
define the number of nodes within the latent vector. In general,
more hidden nodes in the neural network indicate more extracted
features while fewer hidden nodes indicate insufficient informa-
tion. However, the issue is that if the number of hidden nodes is
very large, noise could be included which may decrease the clas-
sification performance. As for fewer hidden nodes, they cannot
store all available information so the classification performance
could be undesirable. Thus, it is essential to investigate how to
determine the ideal number of hidden nodes. In this study, we
adopt the Auto-Encoder to extract those features. We change the
extracted features by tuning the number of hidden nodes in the
last layer of the Encoder, and then we put the extracted features
into a classifier to observe the classification performance. More
details are shown in Section experiments.

The process of compression for the AE model is in fact the
same as dimensionality reduction. There are many other di-
mensionality reduction methods such as Low Variance Filter
(LVF) [26], Principal Component Analysis (PCA) [27,28], Non-
negative Matrix Factorization (NMF) [29], Backward Feature Elim-
ination (BFE) [30], Forward Feature Construction (FFC) [31]. How-
ever, when we apply these methods to classification, their perfor-
mance is not satisfactory (more details are shown in Section 5).
Specifically, in LVF [26], a threshold is always set as the filter to
keep some columns in which their data have rich information (or
the change for data is very large), and remove other columns.
However, it is difficult to ensure that columns with small changes
do not play an important role in the original dataset. The principle
of PCA [27,28] is to map the n dimensional characteristics into
the k-dimensionality (k<n) instead of simply removing some

columns. It uses an orthogonal transformation to convert a set
of possibly correlated variables into a set of linearly uncorrelated
variables. The important question here is that does it keep the
largest entropy of information if we decompose the covariance
matrix? The question is still unknown. Also, the principal compo-
nents with small contribution may contain important information
about the differences among samples. NMF [29] factorizes the
original matrix V (m × n) into two matrices W (weight matrix,
m × k) and H (characteristic matrix, k × n), with k<m and k<n.
The challenges of NMF are: (1) the fitted results for NMF are
inconsistent and these results could be unsatisfactory if we set
many topics, and in such a case it is hard to achieve the global
minimization; (2) the information after reducing dimensionality
is lineally related to inputs, which can weaken the representa-
tion of non-lineal input data; (3). the amount of dimensions is
fixed in NMF, which could result in inflexibility in the process
of reducing dimensionality. As for the BFE and FFC, they are
very time-consuming and hence less used in practice. The Auto-
Encoder can change the dimensions by tuning the amount of
hidden nodes. Both the Encoder and the Decoder adopt the NN
framework which can address the non-lineal data. Thus, in this
paper, we choose the Auto-Encoder to extract the features. In
addition, some researchers [32] investigated that various loss
functions within a neural network can affect the classification
performance. Therefore, in this study, we also employ different
functions from [33–35] and apply them into the regular CNN to
explore their impact on classification performance.

The major contributions in this paper are as follows:

• This paper investigates the idea of improving the classifi-
cation performance using Auto-Encoder model. In partic-
ular, we apply the Auto-Encoder model to improve the
performance of classification on conjunctivitis.

• To the best of our knowledge, this paper proposes for the
first time the focus on changing the number of hidden nodes
to improve the classification performance.

• We investigate the impact on classification performance
with different loss functions for a neural network.

• Extensive experiments have been conducted to demonstrate
the effectiveness of our proposed idea.

The remainder of is paper is organized as follows. In Section 2
we discuss some related work. The preliminary about the Auto-
Encoder model is introduced in Section 3 and then our idea
of applying Auto-Encoder to classification is introduced in Sec-
tion 4. Section 5 demonstrates the experimental results. Finally,
Section 6 concludes this paper.

2. Related work

In machine learning, the classifiers are usually divided into
two categories, linear classifiers and non-linear classifiers. The
linear classifiers include the Perceptron [36], Linear Discriminant
Analysis (LDA) [37], Quadratic Discriminant Analysis (QDA) [38],
SVM (linear kernel) [39], etc. While Perception, LDA and SVM are
widely used in practice, QDA may not be very popular. In most
cases, the classifier grouped samples in a hyperplane, however,
QDA is used to separate objects or events by a quadric surface.
QDA is closely related to LDA in which the measurements from
each class are assumed to follow the Normal distribution. The
difference between QDA and LDA is that QDA has no assumption
that the covariance of each class is identical. In QDA, the best
possible test for the hypothesis that a given measurement is
from a specific class is the likelihood ratio test. As for non-linear
classifiers, it consists of the Naive Bayes [17], KNN [18], Deci-
sion Tree [15], SVM (non-linear kernel) [40], etc. The interesting
thing is that SVM belongs to both categories. In fact, the main
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idea of SVM is based on the linearly separable problem, and
it is gradually extended to the linearly inseparable problem. It
adopts the non-linear mapping algorithm to address the linearly
separable problem by transforming the low-dimensionality lin-
early inseparable samples into the high-dimensionality linearly
separable samples, thus it becomes possible to conduct linear
analysis for samples with non-linear characteristics by using lin-
ear algorithm in high dimensional feature space. When we apply
these traditional classifiers to specific classification applications,
we always combine them with the domain knowledge to improve
the performance [1–3].

Abdar et al. [1] aimed at detecting the early liver disease
and proposed the decision tree-based algorithm to find out re-
lated rules that can efficiently detect this disease. Their results
showed that there were six factors (DB, ALB, SGPT, TB, A/G and
Age) that could significantly affect the accuracy of predicting
the liver disease. In [2], researchers applied the classification
method to the Alzheimer’s disease diagnosis. They adopted the
traditional Association Rule-based classification method to detect
such individual who could suffer from the Alzheimer’s disease.
The 3D voxels centered were selected as input for the Association
Rule-mining by using control subject images to fully characterize
the normal pattern of the image. It yielded an accuracy up to
96.91% for single photo emission computed tomography and 92%
for positron emission tomography. In weak supervised learning,
Mercan et al. [3] employed the viewing records of pathologists
and their slide-level annotations to address the issue of uncer-
tainty between the image areas and the diagnostic labels and the
problem of how to identify regions belonging to multiple classes.
Their predictions showed that the classifier could successfully
perform multi-class localization and classification within whole
slide images. Although these classification methods can achieve
good performance, they are domain-specific or problem-specific.
These algorithms are based on the medical knowledge.

The neural network [5] is a promising classification model
and it can be used in arbitrary domain theoretically. The neural
network has been classified as the linear classifier if there is no
hidden layer, it belongs to the non-linear classifier when there
are many hidden layers. From the nature-inspired perspective,
the node corresponds to the cell and the connection (it is used to
connect two nodes) within the NN corresponds to the axon of the
brain. The strength of the connection can reflect whether the axon
is active or not. Generally, the weak strength corresponds to the
inactive axon while the strong strength corresponds to the active
axon. The input\output within the NN corresponds to the synapse
within the biological neural network, and the signal accumu-
lator

∑
reflects the integration function of biological neurons.

Mimicking the learning process of the brain is via updating the
parameters of the nodes within NN model, because a large mount
of nodes can be enough to understand the salient features of the
object. Thus, the NN model captures the capability to distinguish
different objects.

The famous classification framework in neural network is the
convolutional neural network (CNN) [41], which has shown sig-
nificant advantages in classification tasks and has been used in
medical image classification [42–47]. Since the diseased image
holds salient features, these studies straightforwardly apply the
CNN to the medical dataset. The classification accuracy is not well
when we adopt the same strategy on our case. Although there are
many extensions of CNN such as AlexNet [41], VGGNet [48,49],
ResNet [50], and SqueezeNet [51], their idea is mainly focusing
on the augmentation of the network layer (e.g, AlexNet has just
8 layers, VGGNet possesses 16 to 19 layers and ResNet can reach
up to 152 layers). However, we cannot infinitely augment the
network layer, given the limited physical space within a machine.
In this study, we introduce our innovative classification method
which applies the Auto-Encoder model to classification to im-
prove the performance. Here we first review the Auto-Encoder
model.

3. The auto-encoder model

The Auto-Encoder (AE) [52] belongs to the feed-forward neural
network model, it consists of two main components, an Encoder
and a Decoder. The Encoder is used to encode or compress the
input to form a latent compressed vector. After that, we put this
vector into the Decoder to decode or uncompress to reconstruct
the original input. In other words, the same input would generate
the same output. The Encoder and Decoder can be defined as
transitions φ and ψ:

φ,ψ = argmin
φ,ψ

∥X − (φ ◦ ψ) · X∥
2 (1)

which φ : χ → F and ψ: F → χ in Eq. (1). In Auto-Encoder
model, the output layer has the same number of nodes as the in-
put layer, with the purpose of reconstructing its own inputs. The
Encoder takes x ∈ Rd

= χ as input and maps it to z ∈ Rp
= F , z

is the latent representation and F indicates the feature space. If F
has lower dimensionality than the input space χ , then the feature
vector φ(x) can be regarded as a compressed representation of
the input x. We then uncompress φ(x) back to the original input
by using the Decoder. In other words, the Auto-Encoder model
is such a Neural Network that can reconstruct the original input
as much as possible by learning the input data distribution and
keeping the relevant information while removing the redundant
and irrelevant information. In order to achieve this purpose, the
Auto-Encoder has to learn which parts of information for input
are principal by fine-tuning its parameters repeatedly.

The motivations of applying the AE model to the classification
task are: (1) The traditional classifiers (e.g., Decision tree or
SVM) belong to the linear classifier, and they adopt the distance
(e.g., Euclidean distance) to calculate the difference between the
positive sample and the negative sample so it may be not suit-
able for our case, given that the healthy eyes could contain the
congestion. (2) Achieving the classification is by comparing the
features that are from two datasets, and the quality of features
plays an important role for classification under such scenario.
The NN could capture the background features, because it usually
utilizes the label information to learn the corresponding features
no matter whether these features are focusing on the object
or noise [23]. The AE model focuses on extracting the outline
information of the object rather than the background and can
tune the number of nodes of latent vector to capture the sufficient
available features. This point is very important in medical domain,
because the incorrect classification could cause the aggravation
of disease or even death. In next section, we would introduce our
idea to classify real dataset based on Auto-Encoder model.

4. The proposed classification method

In this section, we mainly present our classification method
using the Auto-Encoder (AE) model to improve the classification
performance. Specifically, we first train the AE model with the
latent compressed vectors encoded by the Encoder; then we
feed those vectors into a classifier for training. After that, we
put the test data, after encoding, into this classifier to calculate
the accuracy. (the process of classification is shown in Fig. 1).
Meanwhile, since our idea involves replacing the original loss
function within a Neural Network with different loss functions,
we would introduce the different loss functions and then we
focus on the AE-based classification model.



4 W. Li, X. Liu, J. Liu et al. / Applied Soft Computing Journal 81 (2019) 105489

Fig. 1. The AE-based classification architecture.

4.1. The neural network with different loss functions

In the CNNmodel and its extensions (such as AlexNet [41], VG-
GNet [48], ResNet [50], and SqueezeNet [51]), we always augment
the layers and nodes to improve the classification performance
as more layers and nodes can increase the generalizability of a
network. However, we cannot infinitely augment the layers and
nodes because of the limited physical space within a machine.
Also, most datasets just hold limited samples in practice, the
overfitting [53] problem may appear. Based on this, researchers
try to improve the classification performance by changing loss
function within a Neural Network and find out that the different
loss function choices may affect the classification robustness [32].
Thus, we try to apply different loss functions to the network to
investigate the classification performance.

In most neural networks, we usually use the Cross Entropy
[54] as loss function to measure the similarity between the ‘true’
distribution and the predicted distribution drawn from a well-
trained model. The smaller the score is, the better the perfor-
mance is. In our study, we view the Cross Entropy as the baseline
to validate the performance of other loss functions. The Cross
Entropy formula is shown in Eq. (2).

L = −
1
N

∑
n

[ylnt + (1 − y)ln(1 − t)] (2)

In Eq. (2), y is the labeled value and t is the predicted value,
given an input x. N indicates the number of samples with each
sample labeled by n = 1, 2, . . . ,N . Moreover, we extract differ-
ent loss functions from [33–35] and apply them to the CNN to
investigate their performance on classification. The modified loss
functions are shown as follows:

max
C

L = Es∼pdata(s)[log C(s)] (3)

which C(s) indicates the predicted value output by classifier and
pdata(s) indicates that the current sample s is from the distribution
of raw dataset (pdata).

LC = max
C

Enχ [p(t|C)] − Ex∼χ [En[p(t|s, C)]] (4)

which En indicates the entropy, and C indicates the discriminative
classifier. Additionally, s indicates the samples and t indicates the
corresponding labels. χ = s1, . . . , sN denotes a dataset of unla-
beled samples. p[t|C] is marginal class distribution and p(t|s, C)
is the conditional class distribution for C . The goal of this equation
is to assign class labels to samples from C .

LC = max
C

s,t∼LlogPC (t|s, y ≤ K ) + Es∼plogPC (t ≤ K |s) (5)

which p is the true data distribution and L is a labeled set with
L = {s, t}. In addition, we assume {1, 2, . . . , K } as the label
space for classification. The probability distribution PC is over K
classes. The first term of Eq. (5) is to maximize the log conditional
probability for labeled data, and the second term is to maximize
the log probability of K classes for unlabeled data. In our study, s
can be replaced by positive samples or negative samples, and we
use the test data to replace the unlabeled data.

4.2. AE-based classification method

A regular Auto-Encoder model, in fact, is a neural network
for unsupervised learning, and the goal of Auto-Encoder is to
learn a representation (encoding) for a dataset. The representa-
tion takes up the available information (or extracted features)
of the original samples. In the Auto-Encoder model, the Encoder
helps us to encode a sample x to a latent compressed vector
z = Encoder(x) ∼ q(z|x), and the Decoder is used to decode this
latent vector z back to the original sample x that would be as
similar as possible x̂ = Decoder(z) ∼ p(x|z). The Auto-Encoder is
also trained to minimize reconstruction errors:

L(X, X ‘) = |X − X ‘
|
2

(6)

which X is from the original sample and X ‘ is the reconstruction.
The smaller the results calculated by L(X, X ‘) are, the better
performance the latent vector z holds.

4.2.1. How to perform classification using AE-based classification
model

When we use the Auto-Encoder to extract the features, the
challenge is that how do we know those features are all impor-
tant. If we change the number of hidden nodes of the last layer
in the Encoder, could the classification performance be changed?
In the latent compressed vector, fewer nodes could learn in-
sufficient information while more nodes could cause overfitting
problem [55]. Both cases could affect the classification perfor-
mance. Moreover, different input sizes could also affect the choice
of the amount of those hidden nodes. In other words, we need to
choose different amount of hidden nodes according to different
datasets as we believe it is a size-specific or information-specific
problem (more details are shown in section experiment).

In addition, the latent vector can be generated at each stage
while we cannot guarantee that every latent vector can be di-
rectly used to perform classification. In the initial training stage,
we could get the noise reconstruction when we use Decoder to
uncompress the latent vectors (the X ‘ is far from the X), even
though those vectors take up the features. After many training
epochs, we still have no idea of the availability of those latent
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compressed vectors. The Auto-Encoder can overcome such chal-
lenge. As a deep learning model, the Encoder needs to be trained
by repeatedly fine-tuning parameters with back-propagation un-
til it achieves the best performance (X ≈ X ‘). The Decoder can
help the Encoder to achieve this purpose by reconstructing the
latent compressed vectors back into the original input, and this
advantage the CNN does not have. If the Decoder successfully re-
construct the latent vectors (X ≈ X ‘), it indicates that the Encoder
has been successfully trained and can successfully extract the
relevant information (features). Then we put those extracted fea-
tures into a classifier to train and to calculate the accuracy. Next,
we specifically discuss how the AE-based classification model
works.

We take the conjunctivitis as the example, which consists of
two categories. The one is the positive category (healthy people)
and another one belongs to the negative category (diseased pa-
tients). We first manually label them as 0 and 1 respectively. We
put those samples into the AE model to extract the corresponding
features. Then, the extra classifier has been adopted, and we train
it using the extracted features and use it to calculate the accuracy
in test dataset. Our classification loss function is shown as follows.

L(Z1, Z2) =

M∑
i=1

L(D(Zi1, 1)) +

M∑
i=1

L(D(Zi2, 0)) (7)

which D indicates the classifier, and Zi1 indicates the negative
vectors encoded by Encoder while Zi2 indicates the encoded
positive vectors. We train the AE model and the classifier with
the batch size.

It can be easily noticed that the training process of classifica-
tion for AE-based classifier is inverse to that of reconstruction. In
the initial stage of reconstruction, the original input X is totally
different from X ‘. If we use a classifier to calculate the probability
that which categories the sample belongs to, we would find
D(X) is approaching 1 while D(X ‘) is approaching 0. With the
training time increases, D(X) is gradually decreasing while D(X ‘)
is gradually increasing until D(X) ≈ D(X ‘). It means that the
reconstruction X ‘ is gradually closing to the original input X until
X ‘

≈ X . However, the training process of our classification model
is the opposite to that of reconstruction. In the initial stage of
training, the results of D(Zi1) is very approaching to that of D(Zi2)
(D(Zi1) ≈ D(Zi2)), it means that the classifier cannot distinguish
between samples from the positive dataset to the samples from
the negative dataset. After training, the outputs of the D(Zi1)
gradually become further from that of D(Zi2) (the outputs of D(Zi1)
is moving towards 1 while that of D(Zi2) is moving towards 0),
which means that the classifier is learning how to distinguish
between positive samples from negative samples. The training
process would be completed by D(Zi1) outputs 1 while D(Zi2)
outputs 0 (more details are shown in experiment section).

The Algorithm 1 AE-based classification model shows the
process of training the AE-based classification model. We nor-
malize [56,57] all data before training our model so as to increase
the generalization of network [56]. Being similar to the activation
function or the convolutional layer, the batch normalization is
also a layer of the network. In the low-layer neural network, the
parameters will be updated during training and thus change the
distribution of input in the next layer (this scenario is named
‘Internal Covariate Shift’). Batch normalization can address this is-
sue. Thus, we add batch normalization function into each hidden
layer in the classifier and AE model.

Algorithm 1 AE-based classification model.
Input:

Raw dataset, label;
Output:

Accuracy score.
Adam optimizer and BCE loss function
for number of iterations do

• Sampling minibatch of m data samples (including
negative and positive samples) x1, . . . , xm from training
dataset.

• Extracting the salient features from the minibatch of m
data samples.

• Feeding those features into the classifier.
• Updating the parameters of encoder and the classifier

by ascending its stochastic gradient.

• ▽θy
1
m

∑m
1 {ŷilogyi + (1 − ŷi)log(1 − ŷi)}.

end for
Extracting the salient features from test data dataset with
encoder.
Feeding these features into the classifier to calculate the
accuracy.

The Algorithm 1 shows how our model classifies samples
based on the Auto-Encoder model, and we would validate our
proposed algorithm in next section.

5. Experiments

We validate our approach on the medical dataset, the con-
junctivitis dataset. The conjunctivitis dataset is also a supervised
dataset, it consists of three types of images, complete health (H),
health with a more or less red color (HR) in conjunctiva, and con-
junctivitis (C). Since our goal is to diagnose which one is healthy
and which one is not, we group the conjunctivitis dataset into
two groups, the health (it includes the first two types of images)
and the patients. We manually label the healthy data as positive
samples (0) and the diseased data are regarded as the negative
samples (1). In addition, for displaying the generalizability of our
proposed model, we also test the classification performance on a
public image dataset, the STL-10 dataset.

5.1. Description of conjunctivitis dataset

The conjunctivitis dataset has two groups, the first group has
626 images, in which the number of healthy ones is 464 (230 HR
and 236 H) and number of diseased ones is 197. The second group
has 150 images, in which the number of healthy ones is 100 (50
HR and 50 H) and the number of diseased ones is 50. Here we
set the first group as the training set and the second group as the
test set. For the original conjunctivitis image, the original size for
each image is different (some are rectangle and some are square)
and some original images hold other object such as eyebrows so
we crop the eyes’ area out from each image and scale them to the
3*64*64 pixels. Fig. 2 shows the cropped images.

Before validating our idea, we pick up a classifier from tradi-
tional classifiers as the baseline (See Table 1). We first observe
the classification performance on different loss functions (See
Table 2), then we describe why we choose the Auto-Encoder as
the feature extracting tool (See Table 3). After that, we observe
the classification performance on different hidden nodes within
latent compressed vector.
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Fig. 2. The cropped images. The left two columns belong to the healthy group
while the right column belongs to the diseased group.

Table 1
The accuracies calculated by different traditional classifiers in the training
dataset.
Classifier Accuracy

SVM [58] 0.782
RandomForest (k = 5) [16] 0.758
KNN (k = 5) [18] 0.742
Naive Bayes [17] 0.573
Decision tree [15] 0.742
Quadratic Discriminant [59] 0.258
Ensembel (n = 50) [60] 0.758
NN [5] 0.815
AlexNet [41] 0.847
VGGNet11 [48] 0.831
ResNet34 [50] 0.758
SqueezeNet(1.1) [51] 0.879

5.2. Testing the classification performance on different loss functions
with conjunctivitis dataset

We first validate the traditional classifiers (all traditional clas-
sifiers are separately from the SCIPY (from SVM to NN) and the
TORCHVISION (from AlexNet to SqueezeNet).) on the training
dataset (proportion is 0.8 (for training) : 0.2 (for test)) to pick
up a classifier as the baseline classifier. The results are shown in
Table 1.

From Table 1, we can see that the best performance is 0.879.
Since SqueezeNet outperforms other classifiers, we use the accu-
racy achieved by SqueezeNet in the test dataset as the baseline
to validate our idea. We first test the classification performance
on different loss functions Eqs. (3)–(5). We put the different loss
functions into the same neural network (here we use the regular
CNN [41]), and the hyperparameters are shown in the left part of
Fig. 3. Specifically, the weights of our model are set to Normal(0.0,
0.02) and the biases are set to (0.0). There are two datasets,
the batch size for Conjunctivitis dataset is 64 (healthy) and 28
(diseased), while that for STL-10 dataset is 64. Notice that the
input channel for Encoder is 12288 and output channel is 512,
which are from the 3*64*64 and 64*8 respectively. As for 27648
and 768, which are from the 3*96*96 and 96*8 respectively. The
learning rate for all models is set to 0.0002, and the parameter
of LeakyRelu with the slope [61] has been set to 0.02, and the
parameter of Dropout is set to 0.5 [62]. The other loss functions
are from Eqs. (3)–(5).

Table 2
The accuracies calculated by CNN with different loss functions in the test set.
Classifier Accuracy

Regular SqueezeNet (Baseline) 0.71
CNN with loss function Eq. (2) 0.753
CNN with loss function Eq. (3) 0.56
CNN with loss function Eq. (4) 0.48
CNN with loss function Eq. (5) 0.667

The classification results are shown in Table 2. From Table 2,
we can see that the model with loss function Eq. (2) outperforms
others (including the baseline, 0.71), and the accuracy reaches
to 0.753. In addition, these results also reflect the effectiveness
of the investigation that different loss functions could affect the
classification performance, especially for the Eqs. (3)–(5). Here is
our analysis for the results:

The principle of classification is to reduce the difference be-
tween the real probability distribution (Preal) and the prediction
probability distribution (Pmodel). The closer the two distributions
are, the better the performance is. However, it is very hard to get
the real probability distribution Preal. Thus, we always hope that
Pmodel learned by our model is similar to Ptraining which is based
on training data with batch size. In fact, we always assume that
the training data are independent and identically distributed (IID)
sampled from the original dataset so that we can minimize the
generalization error of a model by reducing the training data’s
empirical error. The ideal status for the model is that this model
has learned the distribution of the training data successfully,
while the distribution of training data is the same as that of real
data (Pmodel ≃ Ptraining ≃ Preal).

The challenge is that we may suffer from the failure on train-
ing a classifier with good quality, because of the loss function [32].
The loss function would give a value to influence Pmodel on fitting
Ptraining during training. The smaller the loss is, the better the
fitting performance is. From Table 2, we can see that different loss
functions (e.g., Eqs. (4) and (5)) show different classified score,
and the Eq. (4) displays the worst performance. In this equation,
it uses the entropy to calculate the classification accuracy (it is
always a value between 0–1), and we can get a relative large
result according to the formula of entropy (−ln(P(x)), and P(x)
indicates the classification accuracy in this case). If the calculated
loss is a large value, it means that the classifier cannot fit the
Ptraining such that the features of the training data have not been
learned successfully. The classification accuracy is not well under
such a scenario (e.g., 0.48 in Table 2, and the corresponding loss
values are shown in Fig. 4.

5.3. Applying AE-based classification model to conjunctivitis dataset

The extracted features are related to the generalizability of a
classifier, and the better the extracted features, the better the
generalizability. However, the issue is how do we extract the
enough available features so that we can obtain the high accuracy.

We use the AE-based model to achieve such a purpose. Since
other dimensionality reduction methods (e.g., PCA [27], NMF [29])
are widely used to extract features in practice, we compare these
reduction methods with AE model with traditional classifiers.
We first produce the compressed information by using the three
methods on the training dataset. After that, those compressed
information are fed into the traditional classifiers. Afterwards, we
encode the test samples and put the new compressed information
into the trained classifier to calculate the accuracy. The results are
shown in Table 3.

In Table 3, the score within each entry corresponds to an
accuracy. In these three models, the number of hidden nodes
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Fig. 3. Architectural details of our proposed model.

Fig. 4. The green curve indicates the Eq. (4) while the red curve indicates the Eq. (2). The un-convergent curve corresponds to worst score (0.48) in this case.

Table 3
The accuracies calculated by traditional classifiers, after reducing dimensionality.
Classifier NMFn=10 PCAn=10 AEn=10 NMFn=100 PCAn=100 AEn=100

SVM 0.658 0.616 0.685 0.658 0.548 0.678
RandomForest 0.445 0.534 0.664 0.514 0.596 0.685
kNN (k = 5) 0.548 0.541 0.64 0.616 0.541 0.692
Naive Bayes 0.384 0.548 0.644 0.5 0.589 0.699
Decision tree 0.445 0.5343 0.644 0.479 0.507 0.678
Discriminant 0.418 0.568 0.719 0.5 0.589 0.685
Ensemble (n = 50) 0.404 0.589 0.671 0.527 0.534 0.699
NN 0.562 0.616 0.692 0.575 0.541 0.726

for each method has been to the same, and we fine-tune the
number of hidden nodes (e.g., n = 10 and 100) for comparison.
The results show that the AE model is better than others. After
that, we continue to explore how to improve the classification
performance with AE model. We still use CNN as the classifier,
which is used to calculate the accuracy. The hyperparameters of
AE-based model are shown in the right part of Fig. 3.

Fig. 5 shows the training process of the neural network and
the number of hidden nodes within the latent compressed vector
is 200. Specifically, (a) indicates the initial status in which D(Z1)
(Z1 is from the encoded negative samples) is very close to D(Z2)
(Z2 is from the encoded positive samples), it means that the
classifier cannot distinguish which one is healthy or diseased. (b)
indicates that the model has trained 50 epochs, it shows that the
two groups of samples are moving into their corresponding class
labels. (c) indicates a scenario where the training is complete,
it means that the model has successfully distinguished which

Table 4
The accuracies calculated by AE-based classification model on different number
of hidden nodes in the conjunctivitis dataset.
The number of hidden nodes Average of accuracy

10 0.726
20 0.743
50 0.809
60 0.811
90 0.826

100 0.856
200 0.87
300 0.817
400 0.788
500 0.761

extracted features are healthy or diseased. Moreover, D indicates
the classifier shown in the right part of Fig. 3. We continue to
extract different features by fine-tuning the number of hidden
nodes, and we put those features into the classifier to calculate
the accuracy to observe the classification performance. Here we
set the number of epoch to 100 for different hidden nodes, and
the accuracies are shown in Table 4.

In Table 4, we directly run our model 5 times on each number
we chose for hidden nodes, and we calculate their correspond-
ing average of accuracy. The results show that different quanti-
ties can cause different classification performance, and the best
performance is achieved with the hidden nodes = 200.

From Table 4, we can see that the AE-based classification
model obtains the best performance when the number of hidden
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Fig. 5. The training process of AE-based classification model in the conjunctivitis training set.

nodes is 200, and the best accuracy is 0.87. Additionally, differ-
ent number of hidden nodes within the latent vector can cause
different classification performance. However, those results show
that a reasonable amount of hidden nodes could lead to excellent
accuracy (from 100 to 200 in Table 4). Moreover, there are some
interesting scenarios where fewer nodes can cause low accuracy
while too many nodes can also lead to the decrease of accuracy.
The reason behind it could be:

• In the scenario with fewer hidden nodes, the accuracy is low
(from the number of nodes = 10 to that of nodes = 90).
The fewer hidden nodes mean that they cannot save enough
information of original data samples and hence cannot fit
the original data distribution well for CNN when feeding
these information into the CNN. In this way, the accuracy
is not well.

• With increasing number of nodes, we can see the accuracy
is also on the rise, this is because our model learns sufficient
information that can be used to represent the original input.
Thus, high accuracy is achieved (from the number of nodes
= 100 to that of nodes = 200). However, we found that
the accuracy is decreasing from nodes = 300. We consider
that as an overfitting problem [55] because more nodes lead
to more parameters and more parameters mean the model
can fit the training data distribution well. Therefore, the
accuracy is decreasing when the number of hidden nodes
going up.

5.4. STL-10 dataset

The STL-10 dataset consists of 10 class labels, which are ‘air-
plane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’,
‘truck’ and they correspond to the figure ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’,
‘7’, ‘8’, ‘9’ respectively. In this dataset, each sample is a colorful
image with 3*96*96 size. In the training dataset, each category
contains 500 images; while in the test dataset, each category
contains 800 images. Here we directly pick up those samples
whose class labels are ‘airplane’ and ‘automobile’ as the dataset.
Since the AE-based classification model outperforms other clas-
sification methods, we directly use AE-based model to perform
the classification task. We first compare the AE model with other
dimensionality reduction methods on this dataset (‘airplane’ and
‘automobile’), and we set the amount of hidden nodes to the same
(e.g., n = 10 and 90) for comparison. The results are shown in
Table 5.

In Table 5, we use the training data to train these classifiers af-
ter reducing dimensionality. We then calculate the accuracy with
encoded test data. We can see that the AE model is better than
others. After that, we apply the AE-based classification model to
the same dataset, and we still use the same classifier shown in
the right part of Fig. 3.

The training process of AE-based classification model in the
STL-10’s training dataset is shown in Fig. 6. The number of nodes

Table 5
The accuracies calculated by different traditional classifiers.
Classifier NMFn=10 PCAn=10 AEn=10 NMFn=90 PCAn=90 AEn=90

SVM 0.632 0.5 0.696 0.553 0.488 0.733
RandomForest (k = 5) 0.569 0.477 0.684 0.514 0.5 0.736
kNN (k = 5) 0.608 0.505 0.704 0.708 0.523 0.775
Naive Bayes 0.589 0.573 0.689 0.613 0.626 0.729
Decision tree 0.563 0.47 0.669 0.571 0.498 0.737
Quadratic Discriminant 0.58 0.581 0.714 0.605 0.569 0.755
Ensemble (n = 50) 0.629 0.536 0.697 0.596 0.564 0.765
NN 0.729 0.541 0.74 0.733 0.498 0.771

Table 6
The accuracies calculated by AE-based classification model on different number
of hidden nodes in the STL-10’s test set.
The number of hidden nodes Average of accuracy

20 0.842
30 0.853
40 0.865
70 0.907
80 0.913
90 0.929

100 0.916
200 0.888
500 0.861
600 0.859

within the latent vector is 90, because the AE can extract enough
available information under such a scenario (see Table 5), and the
epochs are set to 100.

Fig. 6 shows the training processes of AE-based classification
model in the STL-10’s training dataset. The sub-figure (a) indi-
cates the initial stage in which D(Z1) is very close to D(Z2), it
means that the classifier cannot distinguish which one is ‘air-
plane’ or ‘automobile’. The sub-figure (b) indicates that the model
has trained 65 epochs, it shows that the two groups of extracted
features are separating and moving towards their corresponding
labels, while sub-figure (c) indicates that the model has suc-
cessfully distinguished both the ‘airplane’ and the ‘automobile’.
Then, we feed the test dataset into the classifier to calculate the
accuracy. And the accuracies on different number of latent nodes
are shown in Table 6.

From Table 6, we can see that the best accuracy is 0.929,
and the number of hidden nodes is 90. Similar to Table 4, we
run our model 5 times on each number of hidden nodes, and
we calculate their corresponding average of accuracy. From these
results, we can see that the fewer or more hidden nodes affect the
classification performance, i.e., fewer hidden nodes display lower
accuracy while too many nodes cause the accuracy to decrease.
We also compare the traditional classifiers with our idea on the
same STL-10 data (‘airplane’ and ‘automobile’), and the results are
shown in Table 7 (all classifiers are from the SCIPY (from SVM
to NN) and the MODELS from TORCHVISION (from VGGNet to
SqueezeNet)).
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Fig. 6. The training process of AE-based classification model in the STL-10’s training dataset.

Table 7
The accuracies calculated by traditional classifiers on the same STL-10 dataset.
Classifier Accuracy

SVM 0.8644
Random Forest (k = 5) 0.793
KNN (k = 5) 0.781
Naive Bayes 0.7
Decision tree 0.7319
Quadratic Discriminant 0.532
Ensemble (n = 50) 0.788
NN 0.87
VGGNet11 0.891
ResNet34 0.85
SqueezeNet(1.1) 0.905

From the two sets of experimental results, we found that the
determination of the number of nodes within a latent compressed
vector may be a size-specific or information-specific problem.
Different sizes and different information amounts can result in
the different classification performance. Despite finding out the
most suitable number for hidden nodes is a non-trivial task,
in most cases (different number of hidden nodes), the accuracy
achieved by our classification model is better than traditional
classifiers. We empirically recommend the number from 60 to
200.

5.5. Applying the AE-based classification model to false positive rate
problem

Another advantage of our classification model is to improve
the false positive rate. We train a deep learning model using
a set of samples while calculating the accuracy using another
dataset. Although the classification model produces a result, such
a result is useless considering the test dataset is different from the
training dataset. Our proposed model can reduce such deception
and misleading.

Here we replace the test samples with the ‘ship’ and ‘truck’
(their original categories are 8 and 9 respectively) instead of the
‘airplane’ and ‘automobile’ (their categories are 0 and 1), then
we label them as 0 and 1 respectively. We adopt the traditional
classifier and our proposed model to calculate the accuracy, and
the results are shown in Table 8.

In general, the traditional classifiers (from SVM to Ensemble)
usually use the pixel-distance to calculate the similarity between
two images, the similar pixel would mislead those classifiers to
classify test samples correctly. As to the NN, although the NN is
also used to extract the features, we have no idea to be aware of
the usefulness of those features. The useless features would fail to
perform classification. Thus, we obtain those misleading results.

Table 8 shows that our classification method achieves the
promising performance on reducing false positive rate, and it

Table 8
The accuracies calculated by different classifiers on the STL-10 samples.
Classifier Accuracy

SVM 0.385
Random Forest (k = 5) 0.443
KNN (k = 5) 0.414
Naive Bayes 0.338
Decision tree 0.426
Quadratic Discriminant 0.488
Ensemble (n = 50) 0.466
NN 0.428
AE-based classification model 0.131

reaches to 0.131. It is better than traditional classifiers on screen-
ing false samples and it significantly reduces the false positive
rate.

6. Conclusion

In this paper, to improve the classification accuracy, we have
proposed the AE-based classification method, and investigated
the effect on classification accuracy of Convolutional Neural Net-
work with different loss functions. As only a few studies have
discussed how to determine the number of hidden nodes within
the latent compressed vector, we have explored the robustness of
different number of hidden nodes on classification performance.
Moreover, our classification model can effectively reduce the false
positive rate. We have conducted extensive experiment with STL-
10 dataset and a real-world medical dataset — conjunctivitis
dataset, to validate our idea. The results have shown that our
approach is effective and better than all other methods compared
in this study.
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