
The AdaptiV Approach to Verification of Adaptive Systems

Christopher Rouff
Richard Buskens

Lockheed Martin
Advanced Technology Laboratories

Cherry Hill, NJ 08002, USA
+1-571-480-7555

christopher.rouff@lmco.com
richard.w.buskens@lmco.com

Laura Pullum
Xiaohui Cui

Oak Ridge National Laboratory
Oak Ridge, TN 37830, USA

+1-865-574-4602
pullumll@ornl.gov

cuixhui@gmail.com

 Mike Hinchey
Lero – The Irish Software

Engineering Research Center
Limerick, Ireland
+353-17165703

Mike.hinchey@lero.ie

ABSTRACT
Adaptive systems are critical for future space and other unmanned
and intelligent systems. Verification of these systems is also
critical for their use in systems with potential harm to human life
or with large financial investments. Due to their nondeterministic
nature and extremely large state space, current methods for
verification of software systems are not adequate to provide a high
level of assurance. The combination of stabilization science, high
performance computing simulations, compositional verification
and traditional verification techniques, plus operational monitors,
provides a complete approach to verification and deployment of
adaptive systems that has not been used before. This paper gives
an overview of this approach.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal methods

General Terms
Verification, Theory, Design

Keywords
Verification, adaptive systems, high performance computing
simulation, compositional verification

1. INTRODUCTION
To solve future complex mission needs in space exploration and
aeronautics science, NASA roadmaps [1] and Space Technology
Grand Challenges [2] have identified the need for adaptive
systems—systems that autonomously adjust their behavior during
operation due to unanticipated events, changes in environment,
etc. Verifying such systems before they are deployed is essential
because there are limited to no opportunities to effectively
monitor and adjust their behavior during operation. Current
verification methods do not scale to support the astronomical state

space of such systems. Aggressive state space reduction is
required for modern automated verification techniques to work.
Unfortunately, this leads to low-precision models that no longer
adequately represent the original system.

We are developing Adaptive Verification (AdaptiV), a tool chain
and methodology (Figure 1) for verifying adaptive systems that
alleviates the above challenges. AdaptiV consists of:

(1) a stability analysis capability that identifies instabilities given
a system model and partitions the system model into stable
and unstable component models;

(2) a state space reduction capability that prunes the state space
of an unstable component model without loss of critical
fidelity;

(3) high performance computing (HPC) simulations to explore
component behavior over a wide range of an unstable
component’s reduced state space and produce a statistical
verification for the component;

(4) a compositional verification capability that integrates
individual component verifications; and

(5) operational monitors to detect and take action to correct
undesired unstable behavior of the system during operation.

2. BACKGROUND
Contemporary software systems have massive state spaces. This
is particularly true for adaptive systems, where components of
such systems operate concurrently, interact with each other and
the environment, and react in response to changes in the
environment. The huge state spaces are the result of the
combinatorial explosion caused by non-deterministic interaction
(interleaving) of component operations and the environment.
Typical modern automated verification techniques, such as
automated theorem proving and model checking, do not scale to
support such large state spaces. For these techniques to be
effective, the state space of the targeted systems must be
substantially reduced. State space reduction is achieved by
aggregating state transitions into an abstract (coarser-grained)
finite state model of the system. The technique effectively reduces
the total number of states to be considered, but also reduces the
fidelity of the system model. The key is that the abstract model
must remain precise enough to adequately represent the original
system in dimensions of interest. Thus, a tradeoff exists between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
C3S2E-11 2012, June 27-29, Montreal [QC, CANADA]
Editors: Desai, Mudur, Vassev
Copyright ©2012 ACM 978-1-4503-1084-0/12/06 $10.00

118

Figure 1. Process for verification of adaptive systems

the size and precision of the models. Today, only very abstract,
low fidelity models can be automatically verified. What’s needed
for adaptive systems are techniques to support automated
verification of a much larger state space.

Stabilization science has been used to verify the stability of a
trained neural network, which is one form of an adaptive system
[3-7]. AdaptiV is building on this body of work to verify a
broader range of adaptive systems. It is using stability analysis to
identify the unstable parts of an adaptive system. These parts will
be further analyzed using HPC simulation over a large number of
runs to compute a confidence level in their ability to converge
around a stable operating point or region. While adaptive systems
may be inherently unstable because of operational needs – e.g.,
the need to adapt in real time – this is not necessarily a reason for
failing verification. An unstable system may still converge, even
though complete verification may not be possible.

The above results will then be combined to yield a probabilistic
measure of confidence in component behavior and provide state
space convergence parameters that identify potential symptoms of
unstable behavior. Where comprehensive verification is not
possible, operational monitors can be deployed with the adaptive
system. Monitors will be able to be automatically generated and
deployed to detect non-convergence symptoms during operation
and guide the adaptation towards stable behavior.

3. MODEL CHECKING
A promising, and lately popular, technique for software
verification is model checking [10]. This approach advocates
formal verification tools whereby software programs are
automatically checked for specific design flaws by considering
correctness properties expressed in temporal logic. In general,
model checking provides an automated method for verifying finite
state systems by relying on efficient graph-search algorithms. The
latter help to determine whether or not system behavior described
with temporal correctness properties holds for the system’s state
graph.

A general model-checking problem is: given a software system A
and its formal specification a, determine in the system’s state
graph g whether or not the behavior of A, expressed with the
correctness properties p, meets the specification a. Formally, this
can be presented as a triple (a; p; g). Note that g is the state graph
constructed from the formal specification in a labeled transition
system (LTS) [6] format. Formally, an LTS can be presented as a
Kripke Structure [6], which is a tuple (S; S0; Act; R; AP; L)
where: S is the set of all possible system states; S0 ⊆ S is a set of

initial states; Act is the set of actions; R ⊆ S × Act × S are the
possible state transitions; AP is a set of special atomic
propositions; L : S→2AP is a labeling function relating a set L(s)
ϵ 2AP of atomic propositions to any state s, i.e., a set of atomic
propositions true in that state. Note that in order to make an LTS
appropriate for model checking, each state s must be associated
with a set of atomic propositions AP true in that state.

The biggest issue model checking is facing today is the so-called
state explosion problem [10]. In general, the size of a state graph
is at least exponential in the number of tiers running as concurrent
processes, because the state space of the entire system is built as
the Cartesian product of the local state of the concurrent
processes. To overcome this problem, modern model checking
tools strive to reduce the state space of the targeted software
systems.

Note that a straightforward model of a contemporary concurrent
software system has a large and complicated state space and
reduction is an important technique for reducing the size of that
state space by aggregating state transitions into coarser-grained
state transitions. State-space reduction is achieved by constructing
an abstract (coarser-grained) finite state model of the system,
which eventually is still powerful enough to verify properties of
interest. The technique effectively reduces the total amount of
states to be considered but is likely to reduce the granularity of the
system to a point where it no longer adequately represents that
system. The problem is that although the abstract model is
relatively small it should be also precise to adequately represent
the original system. The latter requirement tends to make the
abstract models large, because the size of a transition system is
exponential in the number of variables, concurrent components
and communication channels. However, large models make
automated verification extremely inefficient, thus introducing
tradeoffs between the size and precision of the models which
considerably reduces their effectiveness.

Figure 2 depicts a generic view of the model-checking verification
method. Note that in the case that a correctness property is not
satisfied, the method returns a counterexample. The latter is an
execution path of the LTS for which the desired correctness
property is not true. If model checking has been performed on the
entire LTS, then the property does not hold for the original AS
specification. Otherwise, in the case that a reduced LTS has been
used (state-explosion techniques have been applied), the
information provided by the counterexample is then used to refine
the reduced model. Numerous formal tools allowing verification
by model-checking have been developed, such as Spin, Emc, Tav,
Mec, XTL, etc. Despite best efforts and the fact that model

119

Correctness
Properties in TL

Atomic
Propositions (AP) Satsified

Report
Correctness

Yes

No Counterexample
Evaluate LTS

Reduce LTS

Large
Model NoYes

Build LTS

Check LTS

 Specification

Model Checking

Figure 2. The Model-Checking Approach

checking has proved to be a revolutionary advance in addressing
the correctness of critical systems, software assurance for large
and highly-complex software is still a tedious task. The reason is
that high complexity is a source of software failures, and standard
model checking approaches do not scale to handle large systems
very well due to the state-explosion problem.

Model checking is the most prominent automatic verification
mechanism today. However it requires finite state models in order
to perform automatic verification of all the possible execution
paths of a system. However, the adaptive systems (or individual
adaptive components) are intrinsically non-deterministic, which
means that they may have a huge state space. As a result, abstract
models needed by model checking are difficult to set up and to
use. Hence, validation by using model checking is possible neither
for the whole system nor for the individual adaptive components.
In such a case, to perform limited model checking on some of the
components, we need to determine the non-adaptive and adaptive
(unstable) parts of an adaptive system.

4. STABILIZATION SCIENCE
Stabilization science [8] provides a common approach to studying
system stability, where a system is linearized around its operating
point to determine a small-signal linearized model of that
operating point. The stability of the system is then determined
using linear system stability analysis methods such as Routh-
Hurwitz, Root Locus, Bode Plot, and Nyquist Criterion. AdaptiV
will use stabilization science on a model of an adaptive system to
partition it into a collection of stable (deterministic) and unstable
(non-deterministic) components, apply traditional techniques to
verify the stable components, apply high performance computing
simulation to explore the state space of unstable components,
compute a verification confidence for each component, and use
compositional verification techniques to produce an overall
verification and verification confidence for the whole system.

Identifying the unstable parts of an adaptive system is key to our
verification approach. The unstable parts introduce uncertainty in
system behavior where, in contrast, a stable system transits from
one safe state to another safe state. Currently, there is no efficient
way to determine the overall stability of a complex concurrent
system, such as spacecraft software. Due to the state space
explosion problem, a system-level stability check may suggest
divergent behavior since over an infinite state space there may be
an infinite sequence of successively weaker assertions, none of
which is stable. To address this problem, we are using
stabilization science to model an adaptive system to identify and

partition the model into a collection of stable and unstable
components. We are using the results of the stability analysis to
create small-signal linearized models for all the system
components. We anticipate that the linearized models of system
components will yield a relatively small state space, enabling their
effective analysis. Automatic stability analysis of the components
might be best performed via time domain simulation using small-
signal models. It should be noted that the lack of unstable
components does not automatically guarantee system stability and
compositional verification will need to be performed to ensure the
desired system behavior.

Partitioning the system into components, verifying each
component, then using compositional techniques to provide an
overall verification for the system is not new. What is unique is
the application of stabilization science to partition the system into
stable and unstable components. Stable components represent
deterministic or non-adaptive behavior and can be verified using
traditional techniques. Unstable components–those representing
non-deterministic or adaptive behavior – require state space
exploration beyond that which can be achieved using traditional
techniques.

5. STATE SPACE REDUCTION
Stable components identified during the stability analysis
represent deterministic or non-adaptive behavior. These
components will be verified using traditional techniques.
Unstable components may require state space exploration beyond
that which can be achieved using traditional techniques. For these
components, we are:

1. Pruning the state space by identifying isomorphic elements in
the state space.

2. Examine patterns in the state space (using clustering,
categorization, or other pattern identification approaches) to
further reduce the state space.

As needed, we will examine other ways to reduce the state space
in ways that provide sufficient confidence that model behavior
appropriately represents actual system behavior.

6. HIGH PERFORMANCE COMPUTING
Stability analysis methods perform exhaustive exploration of all
possible behaviors. Partitioning the system into stable and
unstable components will reduce the size of the state space
requiring exploration and will help to speed up the exploration of

120

the remaining state space. In spite of this, we anticipate that it
will still be impossible to explore the entire state space of a large
adaptive system with limited memory resources and limited time.

To reduce memory, we will take a lightweight snapshot of an
unstable component’s state – consisting of a state’s signature (a
hash compaction of an actual state) and the trace (the sequence of
return values from its path decision function). To restore the
component’s state, AdaptiV will replay the sequence of choices
from the initial state. However, reconstructing states is a slow and
CPU-intensive process, especially when traces are deeper.

To reduce runtime, we will use HPC to determine if and how the
unstable components found during stability analysis will converge
during adaptation. Parallelizing simulations will allow multiple
state space explorations to occur simultaneously. We plan to
investigate the use of HPC to achieve exhaustive exploration on
the unstable components. All HPC “nodes” (or processing
elements) will reconstruct and clone the states from their traces
concurrently and explore them on different nodes. Checkpoints of
actual component states on one node can be efficiently distributed
to other nodes, through live operating system processes that use
thin virtualization techniques. In addition, such techniques
facilitate the use of distributed hash tables, treating the lightweight
snapshot of the states as network objects to achieve fair load
balancing and reduce the network communication for status
exchange between the divided components.

As we indicated previously, even with the help of HPC, we do not
anticipate that any computational model will ever be fully
verified, given limited memory and time resources. To overcome
this limitation, AdaptiV will provide a percentage of confidence
level or confidence measure. The basic confidence measure will
be calculated by following equation:

Cm = x*(2*0.5y)

where Cm is the confidence level measure, x is the total number of
inputs and y is number of optimal samples. How to optimize the
sample results to maximize coverage of the state space is an open
research question that will be explored on this project. Even so,
AdaptiV can increase the statistical confidence level beyond that
of traditional model checking tools.

7. COMPOSITIONAL VERIFICATION
Adaptation significantly complicates system design because
adaptation of one component may affect the quality of its
provided services, which may in turn cause adaptations in other
components. The mutual interaction among system components
affects overall system behavior. Hence, it is not sufficient to
verify each component separately to ensure system correctness.
What’s needed is an ability to check the adaptation process as a
whole. This is a complex and error-prone task. In our approach,
we will apply compositional verification9 techniques, combining
results obtained from the verification of individual components, to
produce an overall system-wide verification. We will consider
combinations that characterize important invariants, classified
into: mission goal invariants, behavior invariants, interaction
invariants and resource invariants. Here, behavior invariants are
over-approximations of components’ reachability of safe states,
and interaction invariants are global constraints on the states of
components involved in interactions. Selecting the most
appropriate set of invariants and determining heuristics for
computing invariants (e.g., interaction invariants) are major
difficulties in designing a compositional verification technique for

adaptive systems. We explore this selection process as part of the
ongoing research. While compositional verification alone cannot
guarantee complete correctness of an adaptive system, it can
prove such things as deadlock-freedom and overall mission-goal
reachability.

8. OPERATIONAL MONITORS
Because an adaptive system cannot be completely verified,
operational monitors should be deployed with the end system.
These monitors will be based on the results of the stability
analysis and the HPC simulations. The monitors can provide
alerts that the system is not converging, restart components or
force the system into a known state if any adaptations do not
converge within a specified time interval.
Instead of one large monitor, we anticipate that it will be more
advantageous to have multiple monitors—one or more for each
adaptive component. To reduce overhead processing, the
monitors would only operate when an adaptive component is
executing; otherwise, they would remain dormant. The monitors
would be configured with information from the HPC simulations
regarding convergence times for an adaptive component during
adaptation. In addition, end states (variable values, etc.) that
indicate that adaptation has completed would also be used by the
monitors.

9. SYSTEM INPUTS
AdaptiV will take as input a model of the adaptive system,
derived from either system requirements or its design. The type
and structure of the model used will depend on the type of
stability analysis used (to be determined as part of ongoing
research). The parts of the adaptive system that are determined to
be stable could be verified using the same techniques as the non-
adaptive components of the system. This research project
concentrates on the unstable parts of the system.

10. CONCLUSION
From the NASA roadmaps [1] and Space Technology Grand
Challenges [2], it is clear that the use of adaptive systems will be
important for future space systems and missions as well as other
life critical systems. Due to their large state space, non-
determinism, and the changing nature of these systems, traditional
verification techniques are not adequate. The combination of
stabilization science, HPC simulations, compositional verification
and traditional verification techniques, plus operational monitors,
provides a complete approach to verification and deployment of
adaptive systems that has not been used before.

11. ACKNOWLEDGMENTS
The research described in this paper was conducted in part at
ORNL (managed by UT-Battelle). This manuscript has been co-
authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States
Government purposes.

121

This work was supported in part by Science Foundation Ireland
grant 03/CE2/I303_1 to Lero–the Irish Software Engineering
Research Centre.

12. REFERENCES
[1] NASA, Space Technology Roadmaps, Office of the Chief

Technologist, October 2011,
http://www.nasa.gov/offices/oct/home/roadmaps/index.html

[2] NASA, Space Technology Grand Challenges, Office of the
Chief Technologist, October 2011,
http://www.nasa.gov/offices/oct/strategic_integration/grand_
challenges_detail.html

[3] Taylor, B.J., Darrah, M.A., Pullum, L.L., et al., Methods and
Procedures for the Verification and Validation of Neural
Networks, Brian Taylor, ed., Springer-Verlag, 2005.

[4] Pullum, L., Taylor, B., and Darrah, M. Guidance for the
Verification and Validation of Neural Networks, IEEE
Computer Society Press (Wiley), 2007.

[5] Pullum, L. L., Darrah, M. A., and Taylor, B.J. Independent
Verification and Validation of Neural Networks -
Developing Practitioner Assistance, Software Tech News,
July, 2004.

[6] Yerramalla, S., Fuller, E., Mladenovski, M., Cukic, B..
Lyapunov Analysis of Neural Network Stability in an
Adaptive Flight Control System. Self-Stabilizing Systems
2003: 77-91.

[7] Phattanasri, P., Loparo, K.A., Soares, F. Verification and
Validation of Complex Adaptive Systems. EECS
Department, Case Western Reserve Univ., Contek Research,
Inc., April 2005.

[8] Emadi, A. and Ehsani, M., Aircraft Power Systems:
Technology, State of the Art, and Future Trends, Aerospace
and Electronic Systems Magazine, IEEE, Volume 15, Issue
1, Jan. 2000, pp. 28 - 32.

[9] Roever, W.-P. de, Boer, F. de, Hanneman, U., Hooman, J.,
Lakhnech, Y., Poel, M., and Zwiers, J., Concurrency
Verification: Introduction to Compositional and Non-
compositional Methods, Cambridge University Press, 2001.

[10] Baier, C. and Katoen, J.-P., Principles of Model Checking,
MIT Press, 2008.

122

