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Improving Ranking-Oriented Defect Prediction
Using a Cost-Sensitive Ranking SVM

Xiao Yu, Jin Liu , Jacky Wai Keung , Qing Li , Kwabena Ebo Bennin, Zhou Xu, Junping Wang ,
and Xiaohui Cui

Abstract—Context: Ranking-oriented defect prediction (RODP)
ranks software modules to allocate limited testing resources to
each module according to the predicted number of defects. Most
RODP methods overlook that ranking a module with more defects
incorrectly makes it difficult to successfully find all of the defects
in the module due to fewer testing resources being allocated to
the module, which results in much higher costs than incorrectly
ranking the modules with fewer defects, and the numbers of
defects in software modules are highly imbalanced in defective
software datasets. Cost-sensitive learning is an effective technique
in handling the cost issue and data imbalance problem for soft-
ware defect prediction. However, the effectiveness of cost-sensitive
learning has not been investigated in RODP models. Aims: In this
article, we propose a cost-sensitive ranking support vector machine
(SVM) (CSRankSVM) algorithm to improve the performance of
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RODP models. Method: CSRankSVM modifies the loss function
of the ranking SVM algorithm by adding two penalty parameters
to address both the cost issue and the data imbalance problem.
Additionally, the loss function of the CSRankSVM is optimized
using a genetic algorithm. Results: The experimental results for 11
project datasets with 41 releases show that CSRankSVM achieves
1.12%–15.68% higher average fault percentile average (FPA) val-
ues than the five existing RODP methods (i.e., decision tree regres-
sion, linear regression, Bayesian ridge regression, ranking SVM,
and learning-to-rank (LTR)) and 1.08%–15.74% higher average
FPA values than the four data imbalance learning methods (i.e.,
random undersampling and a synthetic minority oversampling
technique; two data resampling methods; RankBoost, an ensemble
learning method; IRSVM, a CSRankSVM method for information
retrieval). Conclusion: CSRankSVM is capable of handling the cost
issue and data imbalance problem in RODP methods and achieves
better performance. Therefore, CSRankSVM is recommended as
an effective method for RODP.

Index Terms—Cost-sensitive learning, data imbalance,
ranking-oriented defect prediction (RODP).

NOMENCLATURE

A. Acronyms and Abbreviations

SDP Software defect prediction.
SLOC Source lines of code.
RODP Ranking-oriented defect prediction.
RMSE Root-mean-square error.
AAE Average absolute error.
CSRankSVM Cost-sensitive ranking support vector machine

(SVM).
LR Linear regression.
FPA Fault percentile average.
RUS Random undersampling.
SMOTE Synthetic minority oversampling technique.
PR Poisson regression.
GP Genetic programming.
DTR Decision tree regression.
BRR Bayesian ridge regression.
CE Cost effective.
CLC Cumulative lift chart.

B. Notations

S Defect dataset, which can be written as {Mi =
(xi, yi)}ni=1.

Mi Software module, which can be written as
(xi, yi).

xi Feature vector of Mi, which can be written as
(x1, x2, …, xd).
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xi Value of the ith feature.
yi Number of defects in Mi.
n Number of modules in S.
f Linear function.
w Vector of weights, which can be written as

(w1, w2, . . . , wd).
wi Value of the ith weight.
S’ Module pair dataset, which can be written as

{Pi = (pi, ri)}mi=1

Pi Module pairs, which can be written as (pi, ri).
pi Feature vector of Pi.
ri Label of Pi.
m Number of module pairs in S’.
[x]+ Function max (x, 0).
C Constant.
ξi Slack variable.

I. INTRODUCTION

SOFTWARE defect prediction (SDP) is one of the most
active research fields in software engineering [1], [2]. It

aims to predict whether a particular software module is defective
based on certain software features, such as source lines of code
(SLOC) and change information. More testing resources can be
allocated to modules that are likely to be defective [3]–[5]. In
recent years, researchers have proposed many SDP approaches
[6]–[10] using binary classification algorithms. However, these
approaches are restricted to predict whether a new module is
defective. Conventional classification models thus offer less
benefit in crucial scenarios in which software quality teams want
to focus more attention or scarce resources on the most defective
modules (i.e., modules with the most bugs) among all likely
defective modules [7], [11]. Ranking-oriented defect prediction
(RODP) ranks software modules according to their predicted
number of defects and guides software testers to focus effort
on the modules with more defects. Therefore, RODP can aid
the allocation of limited testing resources more efficiently than
SDP. As an illustration, we present a simple example in Fig. 1.

Example 1: Suppose that a new software project with 100
software modules is to be tested and the testing team can only
test a small portion of these modules (e.g., 20 modules) due to
a deadline. They first use historical defect datasets (including
software features and the number of defects) to build the usual
classification model to predict whether these modules are defec-
tive or a ranking-oriented model to rank these modules based on
their number of defects. They then extract the same software
features of the 100 software modules. Finally, they use the
learned models to predict or rank the defect proneness of these
modules. Given that 30 modules are predicted to be defective
by the classification model, the test team faces the challenge of
determining which of the 20 modules among the 30 predicted
defective modules should be tested. However, the test team can
focus on and test the first 20 modules according to the results of
the ranking-oriented model, which ranks the modules according
to their number of defects. Therefore, ranking software modules
can be more useful than predicting whether a module is defective
when testing resources are limited. As this approach is based on
learning to rank techniques, we call it RODP.

Fig. 1. Difference between the traditional SDP model and an RODP model.

Two approaches can be used to construct RODP models: re-
gression techniques and learning to rank techniques. Regression
techniques first try to predict the number of defects in software
modules using regression algorithms and then use the numbers
to rank the modules. These regression-based approaches con-
struct RODP models by minimizing the total differences in the
predicted and actual numbers of defects. However, predicting
the precise number of defects in a module is difficult due
to insufficient high-quality historical data [5], although it is
more useful than predicting the order of modules. In addition,
regression-based approaches with higher predictive accuracy
(the average absolute error [AAE] or smaller root-mean-square
error [RMSE] value) may result in a worse ranking. For instance,
assuming that there are three software modules, M1, M2, and M3,
which contain 5, 4, and 3 defects, respectively, model P predicts
that M1, M2, and M3 contain 5, 2, and 3 defects, respectively,
whereas model Q predicts that M1, M2, and M3 contain 4, 3,
and 2 defects, respectively. Although model P results in a lower
AAE or RMSE value, the correct ranking of model Q is exactly
what we desire for RODP.

In practice, RODP mainly aims to predict which modules
are likely to contain more defects. Learning to rank software
modules directly should be a much more natural RODP method
than ranking the modules according to the predicted precise
number of defects using regression algorithms [5]. Nguyen et al.
[12] investigated two learning to rank algorithms (i.e., ranking
SVM [13] and RankBoost [14]) for RODP and found that
ranking SVM outperforms the linear regression (LR) algorithm
4%–21% in terms of the Spearman rank correlation coefficient.
The superior performance of ranking SVM over the LR algo-
rithm may be attributable to the difference in the training utility
function. Ranking SVM transforms RODP into a problem of
classifying module pairs into two classes (i.e., correctly ranked
and incorrectly ranked). Here, an incorrect ranking means that
a module with fewer defects is ranked ahead of a module with
more defects in a given module pair. The goal of ranking SVM
is to minimize the number of incorrectly ranked module pairs,
whereas the LR algorithm aims to minimize the total differences
in the predicted and actual numbers of defects. As the final
prediction, performance is measured based on the rank similarity
(i.e., Spearman rank correlation coefficient) rather than the total
prediction errors (i.e., RMSE and AAE), the training procedure
of ranking SVM is better optimized for that measure.

However, the following two key issues must be considered
when applying ranking SVM to RODP.

1) In practice, it is more important to rank the modules with
more defects correctly so that testers can focus their effort
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TABLE I
COST MATRIX

on the software modules that rank first. Ranking a module
with more defects incorrectly implies that fewer testing
resources are allocated to the module, which makes it
difficult to successfully find and fix all of the defects in the
module. As failure to find a defect can severely degrade
software quality, ranking a module with more defects
incorrectly incurs a much higher cost than incorrectly
ranking the modules with fewer defects. However, ranking
SVM considers the costs between ranking the modules
with more defects incorrectly and ranking the modules
with fewer defects incorrectly the same way.

2) Ranking SVM is a pairwise learning to rank algorithm,
which focuses on accurately predicting the relative order
between the two modules. Therefore, ranking SVM must
first transforms the modules in a defect dataset into module
pairs. Then, a classification model is trained based on
these module pairs. Finally, ranking SVM utilizes the clas-
sification model to predict which module contains more
defects in a module pair. However, after transforming the
modules in an imbalanced defect dataset into module pairs,
these module pairs are also imbalanced. For example, the
modules with more than four defects in the Ant project (see
Table I) occupy only a small part of it, but the nondefective
modules occupy a great part of this project, followed by the
modules with one defect. That is, there are a few module
pairs that are composed of modules with many defects
and others, but many module pairs that are composed of
modules with one defect and others. When ranking SVM
is trained on these imbalanced module pairs, the trained
model is biased toward the module pairs that are composed
of the modules with one defect and others. That is, the
trained model can rank the modules with one defect more
accurately than it can rank the modules with more defects.

Cost-sensitive learning is an effective technique in handling
the cost and data imbalance problem for SDP. For example, Liu
et al. [41] proposed a two-stage cost-sensitive learning method
for SDP, which incorporates cost information in both the classi-
fication stage and the feature selection stage. Jing et al. [42] pro-
posed a cost-sensitive discriminative dictionary learning method
for SDP. The experimental results showed that these cost-
sensitive learning methods could improve the performance of the
SDP models. However, the effectiveness of cost-sensitive learn-
ing has not been investigated on the performance RODP models.

Accordingly, we propose a CSRankSVM algorithm for
RODP. Specifically, the CSRankSVM modifies the loss function
of ranking SVM. To address the cost issue, the CSRankSVM
increases the penalty when a module with more defects is
ranked incorrectly, such that the modules with more defects
can be ranked correctly. To solve the data imbalance problem,
the CSRankSVM places more weight on module pairs that are
composed of modules with many defects and others such that the

training can be conducted equally over all module pairs. Then,
the modified cost function of the CSRankSVM is optimized
using the genetic algorithm.

We evaluate the CSRankSVM against the five existing meth-
ods using 11 project datasets with 41 releases. The experimental
results show that the CSRankSVM achieves the highest average
FPA value of 0.723 and outperforms the five methods with more
than half of the datasets. We also compare the CSRankSVM
with the three data imbalance learning methods to investigate the
effectiveness of the cost-sensitive strategies of the CSRankSVM.
The experimental results show that the CSRankSVM improves
the average FPA value of RUS by at least 1.08% and at most
15.21%, of the SMOTE by at least 1.90% and at most 15.74%,
of an ensemble learning method (RankBoost) by 3.73%, and of
a cost-sensitive learning ranking SVM method for information
retrieval (IRSVM) by 9.01%.

The main contributions of this article are summarized as
follows.

1) We propose a CSRankSVM algorithm for RODP. This
is the first attempt to introduce cost-sensitive learning to
address the cost issue and the data imbalance problem for
RODP models.

2) We conduct a comprehensive experiment to compare the
effectiveness of the CSRankSVM with that of the five
existing RODP models and five data imbalance learning
methods on 11 real-world project datasets with 41 releases.
Our extensive experiments show that the CSRankSVM
achieves encouraging results compared with these
baseline methods.

The rest of this article is organized as follows. Section II
presents the related work. Section III introduces the ranking
SVM algorithm. Section IV proposes our CSRankSVM method
for RODP. Section V details the experimental setup. Section VI
provides the experimental results. Section VII discusses the
potential threats to validity. Finally, Section VIII concludes this
article.

II. RELATED WORK

In this section, we review the existing SDP methods and
RODP methods.

A. SDP Methods

In recent years, researchers have proposed a number of SDP
methods using classification techniques, such as neural networks
[15]–[17], support vector machines [18]–[20], decision trees
[21], [22], and Bayesian methods [23]–[27]. Based on various
software features, these methods learn from historical defect
datasets to predict whether a particular software module is
defective. However, defect datasets usually contain many more
nondefective modules than defective ones. Therefore, the SDP
models are generally biased toward nondefective modules [28],
which degrade the prediction performance. Therefore, a number
of data imbalance learning approaches have been proposed, such
as data sampling [28]–[34], ensemble learning [35]–[40], and
cost-sensitive learning [41]–[45].

Data sampling techniques include oversampling and under-
sampling. Oversampling adds synthetic defective modules to
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achieve the class-balanced state, whereas undersampling re-
moves nondefective modules. One of the main drawbacks of
data sampling techniques is that adding and deleting modules
increases the number of false alarms [28], and the loss of original
information [42], respectively. Ensemble learning is another data
imbalance learning approach, which combines multiple individ-
ual SDP models to generate a stronger SDP model (regardless
of whether defect datasets are imbalanced). However, how to
effectively utilize and guarantee the diversity of the individual
SDP models has not been addressed efficiently [45].

In addition to the aforementioned data sampling and ensemble
learning approaches, the cost-sensitive learning techniques are
another major category of approaches used to solve the data
imbalance problem. For the two-class SDP problem, the cost
matrix is given in Table I. In Table I, C(1,−1) represents the cost
of misclassifying a defective module as nondefective, whereas
C(−1, 1) represents the cost of misclassifying a nondefective
module as defective. As the failure to find a defect can severely
degrade software quality, misclassifying a defective module
incurs a higher cost than misclassifying a nondefective module.
Therefore, cost-sensitive learning methods aim to generate SDP
models with minimal misclassification costs. In recent years,
some cost-sensitive learning approaches for SDP have been
proposed. For example, Liu et al. [41] proposed a two-stage
cost-sensitive learning method for SDP that incorporates cost
information in both the classification stage and the feature
selection stage. Jing et al. [42] proposed a cost-sensitive dis-
criminative dictionary learning method for SDP. We propose
a cost-sensitive learning method for RODP. However, the pro-
posed RODP method is different from existing approaches in
which it assigns varying costs to incorrectly ranking module
pairs and increases the penalty when a module with more defects
is ranked incorrectly.

B. RODP Methods

Two approaches can be used to construct the RODP models:
regression techniques and learning to rank techniques [5]. Re-
gression techniques first try to predict the number of defects in
software modules using regression algorithms and then use such
numbers to rank them. In recent years, a number of regression
algorithms have been applied to predict the number of defects,
such as Poisson regression [46]–[49] and genetic programming
[50]–[52], and DTR [53]. In addition, Chen and Ma [54] and
Rathore and Kumar [55] investigated regression algorithms for
predicting the number of defects and found that DTR, LR, and
BRR performed better in terms of the RMSE and AAE. However,
these regression-based approaches construct the RODP models
by minimizing the total differences in the predicted and actual
numbers of defects instead of optimizing the ranking perfor-
mance measures. This may be problematic, as a good model
with higher predictive accuracy (i.e., a smaller RMSE or AAE
value) may conduct poorer module ranking [5].

Compared with regression-based approaches, studies using
learning to rank techniques for RODP have been very limited.
Nguyen et al. [12] investigated two pairwise learning to rank
algorithms (i.e., ranking SVM and RankBoost) for RODP and

found that these algorithms outperform the LR algorithm 4%–
21% in terms of the Spearman rank correlation coefficient. Yang
et al. [5] proposed a learning to rank approach for RODP by di-
rectly optimizing the ranking performance (i.e., FPA). However,
these approaches do not consider the cost and the data imbalance
problems.

III. PRELIMINARIES

In this section, we first introduce the ranking SVM algorithm.
We then analyze two important issues when adapting ranking
SVM to RODP.

A. Ranking SVM

A software module can be written as Mi = (xi, yi), where
xi = (x1, x2, . . . , xd) is a d-dimensional software feature vec-
tor of the module and yi is the number of defects in the module. A
software dataset can be represented asS = {Mi = (xi, yi)}ni=1,
where n is the number of modules in S. The goal of RODP is to
learn from S to obtain a ranking function f to rank two modules
with a right preference relation

Mj � Mk ⇔ f(xj) > f(xk) (1)

where Mj � Mk indicates that the number of defects in Mj

is larger than the number of defects in Mk and f is a ranking
function.

Herbrich et al. [13] proposed the ranking SVM algorithm,
which transforms the abovementioned learning task into that of
learning a binary classifier on module pairs. First, ranking SVM
assumes that the ranking function f is a linear function

f (x) = 〈w,x〉 (2)

where w = (w1, w2, . . . , wd) is a vector of weights and 〈�,�〉 is
an inner product. When (2) is inserted into (1), we obtain the
following:

Mj � Mk ⇔ 〈w,xj − xk〉 > 0. (3)

The relation Mj � Mk of the module pair (Mj ,Mk) is then
expressed by a new vector xj − xk. Next, ranking SVM takes
any two modules whose numbers of defects are different in S
and their relation to create a module pair dataset S ′ = {Pi =
(pi, ri)

m
i=1}, where pi = xj − xk is the vector of the module

pair Pi, ri is the label of the module pair Pi, and m is the number
of module pairs in S’. If the number of defects inXj is larger than
the number of defects in Xk, ri = 1. Otherwise, ri = −1. Fi-
nally, an SVM model is constructed using the training dataset S’.

Constructing an SVM model is formalized as the following
quadratic optimization problem [56]:

min
w,ξ

1

2
‖w‖2 + C

m∑

i=1

ξi (4)

subject to ξi ≥ 0, ri〈w,pi〉 ≥ 1− ξi, i = 1, 2, …, m, where C
is a constant and ξi is a slack variable.

Note that the optimization in (4) is equivalent to the following
nonconstrained optimization problem (i.e., the minimization of
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the regularized hinge loss function) [56]:

min
w

m∑

i=1

[1− ri 〈w,pi〉]+ + λ‖w‖2 (5)

where [x]+ denotes the function max (x, 0) and λ = 1
2 .

Example 2: Suppose that there are ten software modules (i.e.,
M0, M1, …, M9), where M0 has five defects, M1, M2, and M3

have one defect, and the others are nondefective.
For example, M0 and M1 are two modules that can generate

two module pairs, specifically (x0 − x1, 1) and (x1 − x0,−1). As
[1− (1×〈w, x0 − x1〉)]+ is equal to [1− (−1×〈w, x1 − x0〉)]+,
(x1 − x0, −1) is redundant. Therefore, we discard the negative
module pairs in the learning of ranking SVM and our method,
as they are redundant. We can use the ten modules to generate a
module pair dataset S’ = {(x0 − x1, 1), (x0 − x2, 1), (x0 − x3,
1), (x0 − x4, 1), (x0 − x5, 1), (x0 − x6, 1), (x0 − x7, 1), (x0 −
x8, 1), (x0 − x9, 1), (x1 − x4, 1), (x1 − x5, 1), (x1 − x6, 1), (x1
− x7, 1), (x1 − x8, 1), (x1 − x9, 1), (x2 − x4, 1), (x2 − x5, 1),
(x2 − x6, 1), (x2 − x7, 1), (x2 − x8, 1), (x2 − x9, 1), (x3 − x4,
1), (x3 − x5, 1), (x3 − x6, 1), (x3 − x7, 1), (x3 − x8, 1), (x3 −
x9, 1)}, where S’ only contains the positive module pairs.

B. Cost and Data Imbalance Analysis

To adapt ranking SVM to RODP, the following two important
issues must be considered.

1) The correct ranking of the ten modules in Example 2 is
given and two other rankings are required to be made.

Correct ranking: M0, M1, M2, M3, M4, M5, M6, M7, M8, M9

Ranking 1: M1, M0, M2, M3, M4, M5, M6, M7, M8, M9

Ranking 2: M0, M1, M2, M4, M3, M5, M6, M7, M8, M9

Both Rankings 1 and 2 are incorrect, as Ranking 1 incorrectly
ranks M0 and M1 and Ranking 2 incorrectly ranks M3 and M4. In
practice, the cost of the incorrect ranking in Ranking 1 is higher
than that of the incorrect ranking in Ranking 2, as it is crucial to
rank the modules with more defects accurately, so that the test
team can focus their effort on the software modules that list first.
That is, a larger penalty should be added to Ranking 1. However,
ranking SVM does not take this into consideration and assumes
that the costs of the incorrect rankings in Rankings 1 and 2 are
equal.

2) Definition 1: A positive module pair P = (Mp,Mq) can
be labeled with a rank label Rj,k, where j is the number
of defects in Mp and k is the number of defects in Mq.

According to Definition 1, we can transform the loss function
in (5) into the following formula:

min
w

∑mj,k

i=1
[1− ri 〈w,pi〉]+

︸ ︷︷ ︸
Rj,k

+ , . . . ,

+
∑m1,0

i=1
[1− ri 〈w,pi〉]+

︸ ︷︷ ︸
R1,0

+ λ‖w‖2 (6)

where mj,k is the number of the module pairs of rank Rj,k.
Example 3: Transforming the ten modules in Example 2 into

module pairs and labeling them with Definition 1 yields three
(=1 × 3) module pairs of Rank5,1 [i.e., (x0 − x1, 1), (x0 − x2,

1), (x0 − x3, 1)], 6 (=1 × 6) module pairs of Rank5,0 [i.e., (x0
− x4, 1), (x0 − x5, 1), (x0 − x6, 1), (x0 − x7, 1), (x0 − x8, 1),
(x0 − x9, 1)], and 18 (=3 × 6) module pairs of Rank1,0 [i.e., (x1
− x4, 1), (x1 − x5, 1), (x1 − x6, 1), (x1 − x7, 1), (x1 − x8, 1),
(x1 − x9, 1), (x2 − x4, 1), (x2 − x5, 1), (x2 − x6, 1), (x2 − x7,
1), (x2 − x8, 1), (x2 − x9, 1), (x3 − x4, 1), (x3 − x5, 1), (x3 −
x6, 1), (x3 − x7, 1), (x3 − x8, 1), (x3 − x9, 1)].

That is, the module pairs are also imbalanced. In this case,
the loss function of the module pairs of Rank5,1 and Rank5,0
occupies a very small proportion of the total loss function. The
optimal result of (6) would bias the module pairs of Rank1,0
that occupy the larger proportion of the total loss function. The
minimum prediction error cannot be attained on the module pairs
of Rank5,1 and Rank5,0. This issue is also not reflected in the
ranking SVM algorithm.

IV. CSRANKSVM FOR RODP

In this section, we propose a CSRankSVM algorithm for
RODP to address the two issues mentioned above.

A. Loss Function

The strategy of cost-sensitive learning is to modify the cost
of the module pairs of different ranks. Specifically, we add a
penalty parameter μj,k to increase the penalty when a module
with more defects is ranked incorrectly and we add a penalty
parameter ηj,k to place higher weight on the module pairs that
occupy a very small proportion of the total loss function. As a
result, the loss function in (6) is transformed into the following
formula:

L(w) =
∑mj,k

i=1
μj,kηj,k[1− ri 〈w,pi〉]+

︸ ︷︷ ︸
Rj,k

+ , . . . ,

+
∑m1,0

i=1
μ1,0η1,0[1− ri 〈w,pi〉]+

︸ ︷︷ ︸
R1,0

+ λ‖w‖2. (7)

A key issue with cost-sensitive learning is the definition of the
penalty parameters. We use a heuristic method to estimate the
value of μj,k (see Algorithm 1). We first create a correct ranking
for all of the modules in the defective software dataset S and
calculate the ranking performance of this correct ranking (Lines
1 and 2). We use the FPA as the ranking performance measure
(see Section V-B). In principle, any other ranking performance
measures can be used. The FPA value of this correct ranking
is denoted by FPAcorrect. For each module pair P = (Mp,Mq)
of Rank Rjk, we swap the two modules in P (Lines 5 and 6).
This way, we obtain a new ranking and we can calculate the
FPA value for it, denoted by FPApq (Line 7). There is often a
decrease between FPAcorrect and FPApq . Finally, we calculate
the average drop over all module pairs of Rank Rjk and take it
as the value of μjk (Line 11). With such a parameter, we can
increase the penalty when a module with more defects is ranked
incorrectly.

Example 4: Considering the modules in Example 2, the cor-
rect ranking for all of the modules is M0, M1, M2, M3, M4,
M5, M6, M7, M8, M9 and the FPA value of the correct ranking
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Algorithm 1: Calculation of μj,k.

Input: Software dataset S = {Mi = (xi, yi)}ni=1

Output: μj,k

1: Create a correct ranking for all of the modules in S;
2: Obtain the FPA value (FPAcorrect) of this correct

ranking;
3: Drop = 0;
4: Count = 0;
5: for each module pair P = (Mp,Mq) of Rank Rjk:
6: Swap Mp and Mq , and obtain a new ranking;
7: Calculate the FPA value (FPApq) for it;
8: Drop = Drop+ FPAcorrect - FPApq;
9: Count++;

10: end for
11: μj,k = Drop/Count;
12: return μj,k;

Algorithm 2: Calculation of ηj,k.

Input: Module pairs dataset S ′ = {Pi = (pi, ri)}mi
=1

Output: ηj,k
1: Calculate the numbers of module pairs of each

different rank, denoted as {mij , . . . ,m10};

2: ηj,k =
max {mj,k, . . . ,m1,0}

mj,k
.

3: return ηj,k;

is FPAcorrect. For each module pair of Rank5,1, we swap two
modules. For example, if we swap the two modules in the module
pair (M0, M1), then the new ranking is M1, M0, M2, M3, M4, M5,
M6, M7, M8, M9 and the FPA value of the new ranking is FPA01.
In the same way, we swap the two modules in other module pairs
of Rank5,1. Then, we can obtain FPA02 and FPA03. Finally, μ5,1

= FPAcorrect − (FPA01 + FPA02 + FPA03)/3. In the same way,
we can calculate μ5,0 and μ1,0.

We use a simple method to calculate the value of μj,k (see
Algorithm 2). We first calculate the numbers of module pairs
of each different rank, denoted as {mij , . . . ,m10}, where mj,k

is the number of module pairs of rank Rj,k (Line 1). Then, we
define the value of ηj,k as follows:

ηj,k =
max {mj,k, . . . ,m1,0}

mj,k
. (8)

With such a parameter, we can place higher weight on the
module pairs that occupy a very small proportion of the total
loss function. As a result, the training is conducted equally over
all module pairs.

Example 5: Consider the modules in Example 2, m5,1 = 3,
m5,0 = 6, and m1,0 = 18. Thus, η5,1 = 6, η5,0 = 3, and
η1,0 = 1.

B. Estimation of w

We use the genetic algorithm to estimate w, as it is com-
monly used by researchers in the field of software engineering

Algorithm 3: Estimation of w.

Input: Module pairs dataset S ′ = {Pi = (pi, ri)}mi=1

Number of solutions in a population, PopSize
Objective function, L(w)
Number of maximal generation, tmax

Probability of crossover operator, pc
Probability of mutation operator, pm

Output: w
1: Let P0 = initial population with PopSize solutions;
2: Compute the objective function value of each solution

in P0;
3: Record the best solution found so far;
4: Set the current generation number t = 1;
5: while t < tmax do
6: Pt = select(Pt−1);
7: Pt = crossover(Pt);
8: Pt = mutation(Pt);
9: Compute the objective function value of each

solution in Pt;
10: Record the best solution so far;
11: t = t + 1;
12: end while
13: return w;

[57]–[63]. The genetic algorithm is a well-known search algo-
rithm used to find true or approximate solutions to optimization
problems, which convert the solution in a search space to a
chromosome.

In this article, a solution is the value of w. The genetic
algorithm starts with a set of randomly generated chromosomes,
which is called the initial population. It then evolves the initial
population by generating subsequent generations, where each
generation is a population of chromosomes. The evolvement of
the population contains four phases. First, in each generation,
the fitness of every chromosome in the population is evaluated.
Second, the selection phase selects the fittest chromosomes
as the parent chromosomes to breed a new population. Third,
the crossover phase changes the genes of the selected parent
chromosomes according to a given probability pc. Fourth, the
mutation phase modifies the genes of new chromosomes with
a given low probability pm. The algorithm terminates if the
population has converged or the maximum generation limit has
been reached. Details on the genetic algorithm can be found in
[64].

Algorithm 3 presents the pseudocode of estimating the value
of w using the genetic algorithm. First, we randomly create
an initial population P0, which contains PopSize chromosomes
(i.e., solutions) (Line 1). Then, we compute the objective loss
function in formula (7) (i.e., the fitness function) and record the
best solution (i.e., the solution with the minimum loss) (Lines 2
and 3). Next, we evolve the population through tmax iterations. In
each iteration, we perform the selection, crossover, and mutation
operations on the current population, and record the best solution
found so far (Lines 5–12). Finally, the algorithm returns the w
value which minimizes the loss function in formula (7) (i.e.,
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TABLE II
DETAILS OF EXPERIMENTAL DATASETS

the best solution among the population generated in the tmax

generation) (Line 13). The parameters of the genetic algorithm
are as follows: PopSize = 100, tmax = 100, pc = 0.35, and
pm = 0.08, since higher PopSize and tmax do not improve the
performance of the CSRankSVM significantly.

V. EXPERIMENTAL SETUP

In this section, we detail the experimental setup. The exper-
imental environment is a Windows 10 64-bit server with 8 GB
RAM.

A. Datasets

Since we conduct the cross-version defect prediction in the
experiment, we select the 11 public project datasets that include
data for three or more versions from the PROMISE reposi-
tory [66]. The choice of these datasets is also similar to Yang
et al.’s article [5], which investigated the performance of some
regression algorithms for RODP. Table II tabulates the details
of the defect datasets, including the number of modules in
the release (Module), the percentage of defect-prone modules
in the release (%Defect), the percentage of modules with one

TABLE III
FEATURES OF THE DATASETS

defect in the release (%1), the percentage of modules with two
defects and three defects in the release (%2–3), the percentage
of modules with four and five defects in the release (%4–5), and
the percentage of modules with more than five defects in the
release (% > 5).

It is worth noting that although the percentage between the
defect-prone modules and the nondefective modules in Ivy 1.1,
Log4j 1.2, Lucene, Poi 1.5, Poi 2.5, Poi 3.0, Velocity 1.4, Veloc-
ity 1.5, Xalan 2.5, Xalan 2.6, Xalan 2.7, Xerces init, and Xerces
1.4 is balanced, the number of defects in each module in these
datasets is highly imbalanced. That is, the modules with many
defects occupy only a small part of this project, whereas the
defect-free modules occupy a great part of this project, followed
by the modules with one defect. In addition, each module in
the 11 projects has the same 20 independent code attributes,
including the lines of code, weighted methods per class, and
depth of inheritance tree. A more detailed description of the 20
independent code attributes is listed in Table III.

B. Performance Measures

Menzies et al. [67], Kamei et al. [68], and D’Ambros et al.
[69] pointed out that effort should be taken into consideration
when testing the modules suggested by the defect prediction
models. Traditional performance measures used for SDP (preci-
sion, recall, F-measure, and AUC) are not well suited to the eval-
uation of the RODP models, as they give the same importance
to all defective software modules. Therefore, some researchers
have proposed some performance measures for evaluating the
performance of the SDP models in cost-sensitive scenarios, such
as cost effectiveness (CE) [70], Norm(Popt) [71], CLC [72],
and the FPA [73]. The former two performance measures are
SLOC based (i.e., they evaluate how many defects can be found
when we inspect a certain line of code), whereas the latter two
performance measures are module based (i.e., they evaluate how
many defects can be found when we inspect a certain number of

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 06:55:49 UTC from IEEE Xplore.  Restrictions apply. 



146 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

Fig. 2. Module-based CLC.

modules). Ostrand et al. [46] pointed out that software testers are
more concerned with modules that contain more defects and that
using SLOC to evaluate the CE of the SDP models is not valid.
Therefore, we use the module-based performance measures. We
explain the two module-based performance measures as follows.

1) In the module-based CLC (see Fig. 2), the x-axis is the
cumulative percentage of modules to inspect and the y-axis
is the cumulative percentage of defects. The CLC consists
of a curve of the prediction model, where all modules are
ordered by decreasing predicted number of defects. The
CLC is defined as the area under the curve.

2) The FPA is the average of the proportions of actual defects
in the top modules to the total defects. Assume that n mod-
ules in a project are ranked by the nondecreasing order of
the predicted number of defects, asM1,M2,M3, . . . ,Mn,
andY = y1 + y2 + · · ·+ yn is the total number of defects
in these modules. Therefore, Mn is predicted to contain
the most number of defects. The proportion of the actual
defects in the top m predicted modules to the total defects
is calculated as follows:

1

Y

n∑

i=n−m+1

yi. (9)

Then, the FPA is defined as follows:

1

n

n∑

m=1

1

Y

n∑

i=n−m+1

yi. (10)

Yang et al. [5] proved that the CLC and FPA are linearly
related. In the experiment, we use the FPA to measure the
performance, as the FPA is the up-to-date performance measure
proposed to evaluate the performance of the RODP models and
its formula is easier to understand [5].

C. Research Questions

In this experiment, we investigate the following five research
questions.

RQ1. Does the CSRankSVM outperform state-of-the-art
RODP methods?

To answer this question, we compare the CSRankSVM with
three regression-based RODP methods (DTR [74], BRR [75],
and LR [76]), as these algorithms achieve better performance

in most cases in predicting the number of defects [54], [55].
We also compare the CSRankSVM with two learning to rank
methods: learning-to-rank (LTR) [5] and ranking SVM [13].
These methods are described in Section IV-D.

RQ2. Are the proposed cost-sensitive strategies in the
CSRankSVM more effective than other data imbalance learning
methods?

As mentioned in Section II-A, three types of approaches can
deal with data imbalance (i.e., data sampling, ensemble learning,
and cost-sensitive learning). Data sampling techniques include
oversampling and undersampling. Oversampling adds synthetic
defective modules to achieve the class-balanced state, whereas
undersampling removes nondefective modules. We apply both
RUS and the SMOTE to the defect datasets to obtain the balanced
datasets and compare the CSRankSVM with the baseline meth-
ods in RQ1 trained on the balanced datasets. In addition, we com-
pare the CSRankSVM with RankBoost (an ensemble learning
method) [14], IRSVM (a cost-sensitive learning ranking SVM
method for information retrieval) [77], and the CSRankSVM
(a cost-sensitive learning ranking SVM method with only
the penalty parameter ηj,k). These methods are described in
Section IV-D.

RQ3. How effective are the two cost parameters (i.e., μj,k and
ηj,k) of the CSRankSVM?

To demonstrate the capability of the two cost parameters of
the CSRankSVM, we investigate third subquestions: (RQ3a)
Are more defective modules in the top 20% ranking list of
all modules after adding the two cost parameters? (RQ3b) Are
more defects found by inspecting the top 20% ranking list of all
modules after adding the two cost parameters? (RQ3c) Are the
modules with most defects ranked higher after adding the two
cost parameters?

RQ4. Which software features are more effective for the
CSRankSVM?

To answer this question, we use information gain (IG) as
the feature selection method to investigate the effectiveness of
different features. IG is an entropy-based method, which mea-
sures the reduction of uncertainty about the target variable value
after observing the feature. We use IG for two reasons. First,
some empirical studies [86] have demonstrated its effectiveness
for SDP. Second, the work on feature selection for RODP has
been limited. Only Yang et al. [5] applied IG to investigate the
effectiveness of different features for RODP. Following the setup
in article [5], we adopt the iterative subset by selecting the 2, 3,
5, 8, and 13 top-ranked features.

RQ5. What is the execution time for the CSRankSVM?
The CSRankSVM uses the genetic algorithm to optimize the

modified loss function, which is time consuming. Therefore,
we investigate the time efficiency of the CSRankSVM in this
research question. We compare the training time and test time of
the CSRankSVM with those of DTR, LR, BRR, ranking SVM,
LTR, RankBoost, IRSVM, and CSRankSVM-.

D. Methods in Comparison

To answer RQ1 and RQ2, we compare the CSRankSVM with
three regression-based RODP methods (DTR, BRR, and LR),

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 06:55:49 UTC from IEEE Xplore.  Restrictions apply. 



YU ET AL.: IMPROVING RANKING-ORIENTED DEFECT PREDICTION USING A COST-SENSITIVE RANKING SVM 147

two learning to rank methods (Ranking SVM and LTR), and two
data-sampling methods (RUS and SMOTE), an ensemble learn-
ing method (RankBoost), and a cost-sensitive learning method
(IRSVM). These methods are briefly described as follows.

1) DTR: The DTR method builds a regression model in the
form of a decision tree structure by learning from the
training dataset. A decision tree is built top–down from
a root node and brakes down the training dataset into
increasingly smaller subsets with a splitting criterion. The
final result is a tree with leaf nodes and decision nodes.

2) LR: The LR method is a statistical method to build a
linear relationship between the number of defects and
the software features. An LR model can be described
according to the following equation:

y = 〈b,x〉+ b0 (11)

where b = (b1, b2, . . . , bd) denotes a vector of regression
coefficients and b0 is the error term.

3) BRR: The BRR method is a probabilistic method for
building a regression model using Bayesian inference. It
combines prior information about parameters (the coeffi-
cient of software features) with the observed training data
to obtain the posterior distribution of the parameters.

4) LTR: The LTR method trains a simple linear model

f (x) = 〈w,x〉 . (12)

It uses the composite differential evolution algorithm to di-
rectly optimize the FPA value to obtain w. It then uses the trained
model to predict the relative number of defects in new modules
and ranks these modules based on the predicted values.

5) RUS: The RUS method randomly deletes nondefective
modules to balance the ratio of defective modules to non-
defective modules. In the experiment, we set the desired
ratio to 100% to obtain a balanced dataset. We first apply
RUS to the defect dataset to obtain a balanced dataset and
then train DTR, LR, BRR, ranking SVM, and LTR based
on the balanced dataset.

6) SMOTE: The SMOTE method first randomly chooses
a defective module, then finds its k nearest neighbors,
and finally generates a synthetic defective module based
on the module and one of its k neighbors. We use the
same approach in [65] to decide the number of defects
in the generated module. That is, the number of defects
in the generated module is the weighted average of the
numbers of defects in the two seed modules. The weights
are calculated according to the distance between the syn-
thetic module and the two seed modules. The smaller the
distance is, the larger the weight is. In the experiment,
we set k to 5 and the desired ratio between the defective
modules and the nondefective modules to 100% to obtain
a balanced dataset. We first apply SMOTE to the defect
dataset to obtain a balanced dataset and then train DTR,
LR, BRR, ranking SVM, and LTR based on the balanced
dataset.

7) RankBoost: The RankBoost method is a boosting method
for ranking. Similar to all boosting algorithms, it trains a
weak ranking learner at each iteration and then combines

these weak ranking learners as the final ranking learner.
The weak ranking learner h is derived from a ranking
feature fi by comparing the score of fi on a given software
module x to a threshold θ. It is defined as follows:

h(x) =

⎧
⎨

⎩

1, if fi(x) > θ
0, if fi(x) 	 θ
qdef , if fi(x) = ⊥

(13)

where if fi(x) = ⊥, then h(x) = qdef means that if the software
module is unranked by fi, the weak ranking learner assigns
the default score qdef. Then, the “best” feature, threshold and
default score, is solved by minimizing the loss function of the
algorithms.

8) IRSVM: The IRSVM method is a CSRankSVM method
for information retrieval. Specifically, it sets different
losses for the misclassification of instance pairs between
different rank pairs. That is, the IRSVM takes the cost issue
into consideration, but not the data imbalance problem.

9) CSRankSVM-: The CSRankSVM- is a cost-sensitive
learning ranking SVM method with only the penalty pa-
rameter ηj,k. That is, the CSRankSVM- takes the data
imbalance problem into consideration, but not the cost
issue.

Therefore, we can investigate whether the performance of the
CSRankSVM will decrease if we remove any one of the penalty
parameters by comparing the CSRankSVM with the IRSVM
and CSRankSVM-.

E. Experimental Design Summary

Tantithamthavorn et al. [78] performed an empirical study on
validation techniques for SDP and recommended out-of-sample
bootstrap validation, so all of the experiments are performed
using out-of-sample bootstrap, except that we also use the
cross-version setting for RQ1. A bootstrap sample of size N
is randomly drawn with replacement from a dataset with N
modules. The RODP models are then trained on the bootstrap
sample and tested on the modules in the original dataset that are
not contained in the bootstrap sample. The procedure is repeated
20 times for the same set of data. As a result, we obtain 20 results
for each method over each set of training and testing data. We
list the median value of the 20 results in the tables, on which
bold font highlights the best performance in the row.

Then, we perform the Wilcoxon signed-rank test [79] to ana-
lyze the significance of the differences between median results
achieved by the two methods over all datasets. We also use the
Benjamini—Hochberg (BH) procedure to adjust p-values since
we perform multiple comparisons [80]. If the BH corrected
p-value is less than 0.05, it means that there is a statistically
significant difference between the two methods. In addition, we
calculate the effect size (i.e., Cliff’s δ) to measure the differences
between median results achieved by the two methods over all
datasets. By convention, the magnitude of the difference is
considered negligible (0 < Cliff’s δ < 0.147), small (0.147 <
Cliff’s δ < 0.33), medium (0.33 < Cliff’s δ < 0.474), or large
(Cliff’s δ > 0.474) [81].
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TABLE IV
FPA VALUES OF THE DIFFERENT METHODS (THE BEST FPA VALUES FOR EACH

DATASET ARE IN BOLD)

VI. EXPERIMENTAL RESULTS

A. RQ1

To answer RQ1, we compare the CSRankSVM with DTR, LR,
BRR, Ranking SVM, and LTR. Table IV presents the detailed
FPA values of the six methods. Considering the average FPA
value, the CSRankSVM obtains the best performance among

Fig. 3. Boxplot of the FPA values with the six methods using cross-version
setting.

the six methods. In addition, the CSRankSVM achieves the
highest FPA value on 18 datasets. The win/draw/loss (W/D/L)
row presents the results for the number of datasets, on which the
CSRankSVM performs better than, the same as, or worse than
the other methods. The W/D/L values in Table IV show that
compared with DTR, LR, BRR, ranking SVM, and LTR, the
CSRankSVM wins on 40, 27, 23, 40, and 25 datasets, respec-
tively. In addition, the CSRankSVM improves the average FPA
value of DTR by 12.78%, of LR by 3.58%, of BRR by 1.12%, of
ranking SVM by 15.68%, and of LTR by 2.84%, respectively. In
addition, the corrected p-values show that there is a statistically
significant difference between the CSRankSVM and DTR, LR,
and ranking SVM (p-value < 0.05). Cliff’s δ values indicate
that the performance of the CSRankSVM has a larger effect
than those of DTR and ranking SVM (Cliff’s δ > 0.474). Cliff’s
δ values for LR is 0.203, which can also be consid-
ered as small effects (i.e., greater than 0.147 but less than
0.33).

In addition, testers may use a cross-version validation setting
(i.e., using the prior version as the training dataset and the current
version as the testing dataset). Therefore, we also investigate the
effectiveness of the CSRankSVM when using the cross-version
setting. Due to the space limit, we only plot the boxplot of the
entire distribution of the FPA values across all cross-version
pairs in Fig. 3. As shown in Fig. 3, the median value by the
CSRankSVM is higher than all of the compared methods. In ad-
dition, the maximum value by the CSRankSVM is much higher
than the maximum values achieved by the other algorithms.

From Table IV and Fig. 3, we also find that BRR and LTR
perform well. Indeed, the CSRankSVM is not significantly
better than BRR and LTR in most situations in terms of the
average FPA, but the CSRankSVM wins BRR and LTR on
more than half of the datasets. Therefore, we still recommend
CSRankSVM as an effective method for RODP. In addition,
ranking SVM performs worst, because it aims to minimize the
number of incorrect rankings and does not account for the cost
issue and the data imbalance problem. However, after modifying
the loss function of ranking SVM, the CSRankSVM gains great
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TABLE V
FPA VALUES OF THE DIFFERENT DATA IMBALANCE LEARNING METHODS (THE BEST FPA VALUES FOR EACH DATASET ARE IN BOLD)

performance improvement, which indicates that cost-sensitive
learning can be a good solution to learn from imbalanced data
for RODP.

According to the experimental results in Table IV and Fig. 3,
we conclude that the CSRankSVM outperforms the existing
methods in terms of FPA.

B. RQ2

To answer RQ2, we compare the CSRankSVM with two
data-sampling methods (RUS and SMOTE), an ensemble learn-
ing method (RankBoost), and the two cost-sensitive learn-
ing methods (IRSVM and CSRankSVM-) using the boot-
strap setting. As the percentage of defect-prone modules and
nondefective modules in Ivy 1.1, Log4j 1.2, Lucene, Poi
1.5, Poi 2.5, Poi 3.0, Velocity 1.4, Velocity 1.5, Xalan 2.5,
Xalan 2.6, Xalan 2.7, Xerces init, and Xerces 1.4 is bal-
anced, we do not apply RUS and SMOTE to these datasets.
We apply RUS and SMOTE to other datasets to obtain
the balanced datasets and train DTR, LR, BRR, ranking
SVM, and LTR on the balanced datasets. We call the meth-
ods trained on the balanced datasets RUS+DTR, RUS+LR,
RUS+BRR, RUS+Ranking SVM, RUS+LTR, SMOTE+DTR,
SMOTE+LR, SMOTE+BRR, SMOTE+Ranking SVM, and
SMOTE+LTR. Similar to RQ1, Table V presents the detailed
FPA values of these methods.

Comparing the FPA results in Table IV and those in
Table V, we observe that for DTR, BRR, ranking SVM and
LTR, there are 2.80%, 0.67%, 1.24%, and 2.82% performance
improvements in terms of the average FPA values, after ap-
plying RUS to the datasets. However, the FPA values for LR
decrease after applying RUS to the datasets. The CSRankSVM
achieves 1.08%–15.21% higher average FPA values than the
compared methods after applying RUS. After applying SMOTE
to the datasets, the average FPA values of DTR, LR, ranking
SVM, and LTR increase 0.62%, 0.28%, 2.02%, and 3.38%
respectively. But for BRR, there is a little performance degra-
dation. CSRankSVM achieves 1.90%–15.74% higher FPA val-
ues than the compared methods after applying SMOTE. The
W/D/L values show that compared with RUS+DTR, RUS+LR,
RUS+Ranking SVM, and SMOTE+LTR, SMOTE+DTR,
SMOTE+LR, SMOTE+Ranking SVM, and SMOTE+LTR, the
CSRankSVM wins on 23, 22, 14, 26, 14, 25, 17, 13, 24, and 14
datasets, respectively.

In addition, the BH corrected p-values show that there is a
statistical significant difference between the CSRankSVM and
RUS+DTR, RUS+LR, RUS+Ranking SVM, SMOTE+DTR,
and SMOTE+Ranking SVM (p-value < 0.05). Cliff’s δ val-
ues indicate that the performance of the CSRankSVM has a
large effect than those of RUS+DTR, RUS+Ranking SVM,
SMOTE+DTR, and SMOTE+Ranking SVM (Cliff’s δ >
0.474).
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Fig. 4. Boxplot of the PofDM20 values with the four methods.

Compared with RankBoost, IRSVM, and CSRankSVM-, the
CSRankSVM achieves the highest average FPA value and wins
on 18, 23, and 26, datasets, respectively. The CSRankSVM
improves the average FPA value of RankBoost by 3.73%, of
IRSVM by 9.01%, and the CSRankSVM- by 13.12%. There are
statistically significant differences between the CSRankSVM
and the two cost-sensitive learning methods (p-value < 0.05).
Cliff’s δ values show that the CSRankSVM has a large ef-
fect compared with IRSVM and CSRankSVM-, respectively.
In addition, comparison of the CSRankSVM, IRSVM, and
CSRankSVM- shows that the performance of the CSRankSVM
decreases if we remove any one of the penalty parameters.
This indicates that both penalty parameters help improve the
prediction performance.

According to the experimental results in Table V, we conclude
that the CSRankSVM outperforms RUS and SMOTE (when
employing DTR, LR, BRR, ranking SVM, and LTR as the
RODP methods), an ensemble learning method (RankBoost),
and the two cost-sensitive learning methods (IRSVM and
CSRankSVM-). In other words, the cost-sensitive strategy of
the CSRankSVM is more effective than the compared data
imbalance learning methods.

C. RQ3

To demonstrate the capability of the two cost parameters
(i.e., μj,k and ηj,k) of the CSRankSVM, we first investigate
whether more defective modules are in the top 20% ranking
list and how many defects can be discovered by inspecting the
top 20% modules after adding the two cost parameters, we use
the PofDM20 and PofD20 as the performance measure. The
PofDM20 is the percentage of defective modules that can be
discovered by inspecting the top 20% ranking list of all modules.
The PofD20 is the percentage of defects that can be discovered
by inspecting the top 20% ranking list of all modules.

Figs. 4 and 5 present the boxplots of the entire distribution
of the PofDM20 and PofD20 values across all datasets, re-
spectively. As shown in Figs. 4 and 5, the median value by
the CSRankSVM is higher than all of the compared methods

Fig. 5. Boxplot of the PofD20 values with the four methods.

Fig. 6. Boxplot of the ranking values with the four methods.

in terms of PofDM20 and PofD20. In addition, the maximum
value by the CSRankSVM is much higher than the maximum
values achieved by the other algorithms in terms of PofD20.
Therefore, we can conclude that the two cost parameters of the
CSRankSVM can contribute to make more defective modules
rank in the top 20% ranking list of all modules and finding more
bugs.

Then, in order to investigate whether the module with most
defects is ranked higher after adding the two cost parameters, we
use Ranking as the performance measure, which is the ranking
of the module with most defects to the whole ranking list. For
example, if the whole ranking list contains 10 modules and the
module with most defects is ranked 2nd in the whole ranking
list, then Ranking is 0.2 (=2/10).

Fig. 6 presents the boxplot of the entire distribution of the
ranking values across all datasets, respectively. As shown in
Fig. 6, the median value by the CSRankSVM is lower than all of
the compared methods. In addition, the maximum value by the
CSRankSVM is much lower than the maximum values achieved
by the other algorithms. Therefore, we can conclude that the two
cost parameters of the CSRankSVM can contribute to make the
module with most defects rank higher.
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Fig. 7. Boxplot of the FPA values with CSRankSVM trained on the different
number of features.

D. RQ4

To answer RQ4, we use IG as the feature selection method
to investigate the effectiveness of different features. IG is an
entropy-based method. IG measures the reduction of uncertainty
about the target variable value after observing the feature. We
use IG for two reasons. First, some empirical studies [86] have
demonstrated its effectiveness for SDP. Second, the work on
feature selection for RODP has been limited. Only Yang et al. [5]
applied IG to investigate the effectiveness of different features
for RODP. Following the setup in paper [5], we adopt the iterative
subset by selecting the 2, 3, 5, 8, and 13 top-ranked features.

Fig. 7 presents the boxplot of the entire distribution of the
FPA values based on different numbers of features. As shown
in Fig. 7, the median and maximum values of the CSRankSVM
trained on all features are higher than those of the CSRankSVM
trained on fewer features. That is, models based on fewer features
do not work better than models based on all features, which
indicates that IG does not improve the performance of the
CSRankSVM. This observation is not consistent with previous
studies [86]–[88]. One reason may be that IG is applicable to
classification tasks, but not to ranking tasks. Therefore, design-
ing a more effective feature selection method for RODP is one
of our future research interests.

E. RQ5

Table VI lists the average training time and testing time
over the 11 project datasets in Table II. To conserve space, we
do not list the time for each dataset. As given in Table VI,
we observe that the CSRankSVM requires 764.32 s to train
a model and 0.21 s to test it. In addition, the training times
of LTR, RankBoost, IRSVM, and CSRankSVM- are 98.91 s,
157.32 s, 725.46 s, and 732.87 s, respectively, as these methods
also require multiple iterations to obtain the optimized training
models. Although, the training time of the CSRankSVM is a
little long, the testing time is less than 1 s. Therefore, we argue
that it is still acceptable.

TABLE VI
AVERAGE TRAINING TIME AND TESTING TIME OF DIFFERENT METHODS

VII. THREATS TO VALIDITY

In this section, we discuss some potential threats to validity
that may affect the results of this article.

In our experiments, we choose 11 project datasets from the
PROMISE repository. Although they have been widely used
[82]–[84], we still cannot claim that our method would perform
best for other defect datasets, especially proprietary datasets,
which we do not consider in this article.

We set the parameters for the baseline methods according to
the existing works or default parameters. The best parameters for
different datasets may be different, which may result in different
results. We set the desired ratio between the defective modules
and the nondefective modules to 100% when applying RUS and
SMOTE to the training datasets, as this is common practice. The
optimal ratios for the different datasets and different baseline
methods are different, so it is difficult to choose the fixed optimal
desired ratio. The proposed approach assumes that software
quality teams allocate testing resources based on the number of
defects, ignoring the severity of defects and the testing time. This
may not always be the case. Thus, our method can be improved
by considering the severity of the defects.

In our experiments, we use the FPA as the evaluation measure,
as it is a module-based performance measure. Furthermore,
Ostrand et al. [46] acknowledged that software testers are more
concerned with the modules that contain more defects. Addi-
tionally, the FPA is the up-to-date performance measure, which
is linearly related to the CLC and is easier to understand [5].

VIII. CONCLUSION

In this article, we proposed CSRankSVM, a cost-sensitive
learning method that learns from imbalanced defect data for
RODP. The RODP models rank software modules based on the
predicted number of defects and consequently help in the effi-
cient allocation of testing resources. Apparently, the actual cost
of incorrectly ranking a module with many defects was much
higher than the cost of incorrectly ranking a module with one
defect, thus it was necessary to incorporate the incorrect rank-
ing costs into the RODP models. Additionally, defect datasets
were known to be highly class imbalanced. However, existing
RODP methods did not take these two issues into consideration.
Therefore, the CSRankSVM incorporates two cost parameters
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(i.e., μj,k and ηj,k) into the loss function used in ranking SVM
to address the cost and data imbalance issues. We then used a ge-
netic algorithm to optimize the loss function. In the experiment,
we empirically evaluated the performance of the CSRankSVM
on 11 open-source project datasets with 41 releases. The results
showed that the CSRankSVM outperforms the baseline meth-
ods, including the five existing RODP methods and four data
imbalance learning methods. The experimental results showed
that the two cost parameters of the CSRankSVM could solve the
cost issue and the data imbalance problem, and achieved better
performance. We also observed that the two cost parameters
of the CSRankSVM made more defective modules rank in the
top 20% ranking list of all modules, and made the module
with most defects rank higher. Therefore, the CSRankSVM
was recommended as an effective method for RODP. Apart
from the CSRankSVM, we have discovered that (Bayesian ridge
regression (BRR) also achieves good performance. Therefore,
designing an effective data imbalance learning method based on
BRR was also a potential direction for future improvement for
RODP.
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