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Abstract
Preserving data confidentiality is crucial when releasing microdata for public-use. There are a variety of proposed approaches;
many of them are based on traditional probability theory and statistics. These approaches mainly focus on masking the original
data. In practice, these masking techniques, despite covering part of the data, risk leaving sensitive data open to release. In this
paper, we approach this problem using a deep learning-based generative model which generates simulation data to mask the
original data. Generating simulation data that holds the same statistical characteristics as the raw data becomes the key idea and
also the main challenge in this study. In particular, we explore the statistical similarities between the raw data and the generated
data, given that the generated data and raw data are not obviously distinguishable. Two statistical evaluation metrics, Absolute
Relative Residual Values and Hellinger Distance, are the evaluation methods we have decided upon to evaluate our
results. We also conduct extensive experiments to validate our idea with two real-world datasets: the Census Dataset
and the Environmental Dataset.
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1 Introduction

When data collectors release microdata to analyzers, the issue
of honoring confidentiality constraints regarding the data has
always been important. Many researchers focus on this chal-
lenge and they have developed many techniques [1] [2] [3] [4]
to deal with this issue at hand. Developed techniques include
Statistical Disclosure Limitation (SDL) including topcoding
or bottomcoding [5], data swapping [6], adding random noise
[7], and multiple imputation [1]. Nonetheless, there remain

fundamental issues in the developed techniques. One of the
typical issues in these techniques is that the released data can-
not completely be masked or replaced, so the risk of confiden-
tiality exposure still exists. One technique, multiple imputa-
tion, is shown in Fig. 1 sub-figure (a). The two variables X1
and X2 are shown in the left table of the sub-figure (a). The
multiple imputation technique generates synthetic data via
posterior predictive distribution (e.g., P (X2 | X1) or P (X1 |
X2)). This synthetic data is denoted with red and blue filled
circles in the right table of sub-figure (a). From the sub-figure
(a), we can see that the multiple imputation technique [1]
cannot mask all data. In general, people denote an n × p data
indicator matrix Z = zi,j, ..., zn,p where zi,j = 1 indicates that xi,j
is selected to be replaced by synthetic value while zi,j = 0 in-
dicates that xi,j is unchanged, given that the original dataset has
been set as X = xi,j. The issue rises in the fact that unchanged
data could be sensitive, resulting in a risk of exposure of
confidentiality.

As for the bottomcoding technology shown in sub-figure
(b), it roughly sets a threshold (here threshold = 4) to replace
data with values less than or equal to the threshold. This pre-
sents two challenges: 1) some sensitive data above the thresh-
old is still exposed; 2) the intruder could infer the sensitive
data from non-sensitive data. Considering the potential chal-
lenges of these approaches, there is room for a new approach
that eliminates these issues.
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In this study, instead of utilizing mathematical statistics to
mask or replace raw data, we explore an alternative masking
direction, which is to use the deep learning-based generative
model to generate simulation data to replace original data that
consists of similar statistical characteristics (each bin has the
similar/same statistical frequency shown in Fig. 2) to the orig-
inal data. For the state-of-the-art generative models
(AutoEncoder [9] and Generative Adversarial Net (GAN)
[10]), the mechanism of generating simulation data is to trans-
form a noise, sampled from an easy-to-sample distribution
(e.g., Uniform distribution or Gaussian distribution), into the
“realistic” data. The training would be complete when the
discriminator is unable to differentiate between the raw data
and the generated data. Even when this occurs, we need to
investigate if similar distribution means similar statistical
characteristics. To visualize our hypothesis, we test the rela-
tionship between statistical characteristics and similar distri-
butions. This is shown in Fig. 2.

In Fig. 2, the sub-figures (a) and (b) correspond to statistical
results of original data and simulation data, respectively. Sub-
figure (c) royally reflects both the original data Gaussian dis-
tribution and the generated data Gaussian distribution. As is
readily apparent, the age results shown in sub-figure (a) are
significantly different from (b). The age range of the former
histogram (a) is 0 to 90, while that of the latter histogram (b) is

limited from 20 to 45. Although both Gaussian distributions
shown in sub-figure (c) are similar, the generated data cannot
represent the original data in practice. In other words, they are
two totally different datasets. Also, the generated data is con-
centrated on a limited interval, which implicitly indicates a
lack of diversity.

A few elements need to be considered for creation of the
generative model. To generate simulation data consistent with
the original statistical data, we first have to test which gener-
ative model (AutoEncoder or GAN) is more suitable for gen-
erating numeric data (this will be discussed in Section 3). We,
also, consider the optimizer impact on the quality of generated
data by the generative model. Different optimizers influence
the training stability which can adversely affect the generated
data quality (Adam even turns the gradients negative in
Wassertein GAN [11]). Additionally, evaluationmethods need
to be discussed. Generative models usually rely on the two
distributions approaching each other. However, Fig. 2 shows
that the two approaching distributions cannot guarantee both
raw data and generated data have the same statistical frequen-
cy in the histogram. We utilize two evaluation metrics,
Absolute Relative Residual Values [12] and Hellinger
Distance [13], to evaluate such statistical characteristics after
mapping both simulated data and original data into the histo-
gram. More details are shown in Section 3.
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Fig. 1 Sub-figure (a) demonstrates an example in which we apply the
multiple imputation technology [1] to the original data. The X1 and X2
jointly denote the original data, and the red dash-line and blue-filling
triangles represent the sensitive data that we want to mask at the left table.
In the right table, the red-filling and blue-filling circles are synthetic data,
which means that these sensitive data have been masked by the multiple

imputation technique. Sub-figure (b) shows a scenario where we apply
the bottomcoding technology [5] to a dataset {1,4,3,2,9,12,2,5,7,15}. We
set a threshold (<=4) to replace any number that is less than or equal to 4
with −1. The results show that although original data is partially masked,
it still leaves rooms for confidentiality exposure



In summary, our major contributions are as follows:

– This paper explores which deep learning-based genera-
tive model (AutoEncoder or GAN) is suitable for gener-
ating the numerical dataset.

– This paper casts light on adding a batch normalization
function into the GANmode’s hidden layer and choosing
the SGD optimizer to best modify the model. In particu-
lar, this paper demonstrates how to utilize batch normal-
ization to generate numerical simulation data and this
paper discusses the optimizer impact on the quality of
generated data.

– We propose two evaluation metrics to assess the similar-
ity between the generated data and the raw data, after
mapping them into the histogram.

– Through comprehensive experiments on two datasets, we
demonstrate the effectiveness of the proposed approach.

This paper is organized as follows. In Section 2 we discuss
some related work. In Section 3, we present our main idea and
evaluation metrics. In Section 4 we show our experiment re-
sults. Section 5 serves as the conclusion.

2 Related work

Since directly releasing micro-data brings the risk of privacy
exposure, the method Statistical Disclosure Limitation (SDL)
[14] has been developed for protecting the confidentiality of
released data. The topcoding method [5] replaces the data
samples (x) with a threshold C when x ≥ C. Similarly, the
bottomcoding method replaces data samples (x) when x ≤C.
Adopting this similar strategy (using a threshold to synthesize
data) also includes t-closeness [15]. Researchers use recording
method [5] to edit raw data when releasing it categorically. For
example, they hide specific age values in specified intervals in

a histogram. Challenges exist with this method: while it nar-
rows the data range, malicious analysts can still discover the
original data. Another data swapping technique is based on the
idea of swapping sensitive data with non-sensitive data to
reduce the risk of exposure. This technique is optimal for
preserving univariate distribution while unsatisfying multivar-
iate relations in a dataset. The scenario where skilled, mali-
cious analysts can use the non-sensitive data to infer sensitive
data, will inevitably, still exist. Adding random noises [7] can
confuse the intruders. However, such a method cannot satisfy
the covariance structure of the raw data, and too much noise
can also confuse benevolent analyzers. In summary, we can
see that raw data cannot be completely covered with SDL,
because the risk of leaky confidentiality still exists. An alter-
native approach to SDL is multiply-imputed synthetic micro-
data [1]. Amultiply-imputed dataset consists of the actual data
(X), the designer (D), the outcome variables with some confi-
dentiality (Y) and the outcome variables without confidential-
ity (Z). The challenge is how to predict (Z, Y) from X with D.
Note that such a technique canwork in particular cases and not
all scenarios.

A recently active area of research is to use the differential
privacy [16, 17] to preserve the data privacy. In the traditional
process of retrieve, for example, we assume an intruder knows
the expected information in the 3rd row (all information is
listed row by row), and he does not know the private, specific
attribute value at the same place. The intruder can, however,
obtain the private value by using a SQL sentence, i.e.,
count(3)-count(2). Differential privacy injects some noise or
disturbance data to protect the raw data. Specifically, a distur-
bance can be utilized on a given dataset A to render a disturbed
dataset A‘. After that, we randomly delete a row from A and
we perform the same strategy; we name the new dataset B‘. If
B‘is similar to A‘, we think the differential method worked.
Note that such a method does not concern whether A‘is similar
to A. The disturbed dataset A‘may hold different statistical
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Fig. 2 Sub-figure (a) indicates the histogram of raw data of age field in
census dataset, while sub-figure (b) indicates the histogram of generated
data produced by a regular GAN model with Adam gradient [8] on the
same field. In comparison with raw data histogram, here we produce
generated data with same size as raw data. Since the age-bracket is from
0 to 90, we map all raw or generated values into the range of (0, 90), and
we use an array of size 100 to save the generated values. We count the

statistical percentile of each entry in this array. After that, we use the
plt.hist() function with bins = 10 to plot their histograms. Sub-figure (c)
shows the Gaussian distributions of both original data and generated data.
From the three sub-figures, we can see that although the two distributions
are closely similar, the generated data cannot represent the original data in
practice. This is because they have different statistical characteristics



characteristics than the raw dataset A. More details are shown
in the experiments section.

In this study, our idea is to use simulation data to address
the aforementioned challenges. Simulation data is already
widely utilized and has been applied to many fields including
agriculture [18], astronomy [19], visualization [20], crime
analysis [21], biology [22] and transportation [23]. These gen-
eration techniques are often domain-specific or problem-spe-
cific. One recent generative model is Generative Adversarial
Net (GAN) [10]. It can generate quite different simulation data
when compared with the raw data (e.g.,” King” -” Man” +”
Woman”= “Queen”) [24], which can completely cover the
original data. The GAN model consists of two components, a
discriminator (D) and a generator (G). The discriminator (D)
can be viewed as a detective who can tell whether a data point
is genuine or not, and the generator (G) can be regarded as a
forger who generates simulation data and tries to fool the
discriminator into accepting generated data as real. If the dis-
criminator cannot distinguish whether a sample is genuine or
not (e.g.,D(G(z)) = 0.5), the training process is complete. The
potential of GAN for generating simulation data has been an
area of active research, and its extensions, such as Conditional
GAN [25], Deep Convolutional GAN [24], Wassertein GAN
[11] and Least Squares GAN [26], have been widely adopted.

Another generative model, the AutoEncoder [9], also con-
sists of two components, an Encoder and a Decoder. It adopts
Compression-Reconstruction technology to generate simula-
tion data. In the compression stage, the Encoder would com-
press input samples to hidden nodes; while in the reconstruc-
tion step, the Decoder would reconstruct samples from the
hidden nodes. There is an equivalence relationship between
input and output (e.g., Xinput ≈ Xoutput). If the model achieves
such equilibrium, we can feed noise (the size of the noise
equal to that of the hidden nodes) into the Decoder to synthe-
size new instances. Dai et al. [27] attempt to use the Encoder-
Decoder to protect private information. They use this model to
extract the privacy region in videos and scramble it while
encoding so the users can only see the non-private regions,
given that the AutoEncoder can be used to reduce dimension-
ality. Psychoula et al. [28] also uses the Encoder-Decoder
system to preserve sensitive personal data, based on the
user-access authority.

These two generative models mainly focus on image gen-
eration and classification. The application to numeric data has
been very limited. Also, while there are many evaluation met-
rics for generative model, few evaluation metrics focus
on whether the simulated data has the same statistical
characteristics as the original data. In this study, we
extend the application of deep generative models from
image generation to generic numeric data generation.
We also introduce two statistical metrics to assess the
statistical similarity between the generated data and the
original data.

3 Simulation data generation and statistical
gap measure

In this section, three issues regarding simulation data generat-
ed from deep learning-based generative model will be
discussed: 1) which generative model is suitable for numerical
data generation? 2) a new generating process. 3) how to
assess the statistical similarity between generated data
and original data?

3.1 Performance assessment of generative model

Although the two generative models were introduced in
Section 2, we formally describe them below to establish con-
tinuity. The goal of AutoEncoder is to learn representations
(encoding) from a dataset, especially for the purpose of di-
mensionality reduction. Recently, this model has become
widely used for generating simulation data. It always consists
of two components, the encoder and the decoder, which can
be defined as transitions φ and ψ respectively:

φ;Ψ ¼ argmin φ Ψð Þ X− φ°Ψð Þ⋅Xk k2 ð1Þ

In which, φ: χ→ F and ψ: F→ χ. There is one hidden
layer in Eq.(1), the encoder takes the input x ∈ Rd = χ and
maps it to z ∈ Rp = F. Since the best generative model for
AutoEncoder is the Adversarial AutoEncoder (AAE) [29],
we adopt the AAE to generate simulation data. The AAE is
regularized by matching the aggregated posterior, q(z), to an
arbitrary prior, p(z). The encoder ensures the aggregated pos-
terior probability distribution can fool the discriminator into
accepting the hidden code q(z) that comes from the prior prob-
ability distribution p(z).

A GAN model usually consists of two components [10], a
generative model G and a discriminative model D. The gen-
eratorG transforms an input, which is a latent random vector z
sampled from noise distribution pz(z), into an image, and then
the image is fed into the discriminator D, given that the train-
ing dataset is an image dataset. The discriminator D would
output a single scalar to indicate that the current data come
from the generator rather than original dataset. Thus, the two
components are competing against each other.

We simultaneously train the generator and the discrimina-
tor by using the following loss Eq. (2):

minmax G;Dð ÞV G;Dð Þ ¼ Ex∼pdata xð ÞlogD xð Þ
þ Ez∼pz zð Þ log 1−D G zð Þð Þð Þ½ � ð2Þ

In Eq. (2), x comes from a distribution pdata(x) sampled
from the original dataset and z comes from another distribu-
tion pz(z) sampled from the noise. The generator would pro-
duce the simulation data to fool the discriminator into
accepting it, and the discriminator would output a single score
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∈ [0, 1] to indicate whether the evaluated data is from the
generator or not. Generally, a smaller score indicates
that the current data is from the generator, while a
higher score indicates that the current data comes from
the original dataset. We repeat this training process until
both the discriminator and the generator reach a Nash
Equilibrium [30] where pG(z) = pdata(x) = 0.5.

We then explore the first issue: which generative model is
more suitable for generating numeric simulation data.We utilize
similar hyper parameters to fairly compare the two models (reg-
ular AAE and regular GAN). Specifically, the implementation

details of the two models are shown in Fig. 3. The generated
results are shown in Fig. 4.

In Fig. 4, the sub-figure (a) indicates the generator loss and
that of decoder loss while sub-figure (b) reflects the two
models’ histograms. From the results, we can see that the
AAE model is not suitable for our case. Not only is the loss
divergent but the statistical percentile of generated data is
different from the raw data (as is shown in sub-figure (a) of
Fig. 2). This is because the AutoEncoder model spreads prob-
ability mass to places it might not make sense [33]. In addi-
tion, the AutoEncoder model belongs to lossy compression
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Fig. 3 Architectural details of AAE and GAN. The weights are set
Normal (0.0, 0.02) and the biases are set (0.0). The learning rate is
0.0002. We use BCE to update both generator’s parameters and

discriminator’s parameters. For discriminator, we set the LeakyRelu [31]
as 0.02 and that ofDropout [32] as 0.5. Two models apply BatchNorm1d
to each hidden layer and the optimizer adopts SGD

Fig. 4 The two generative models have been applied on age field in
census dataset. Apparently, the performance of GAN is better than that
of AAE. Sub-figure (a) indicates that the loss for decoder of AAE cannot

converge while that is stable for generator of GAN, and (b) indicates the
corresponding statistical results of two generations from both AAE and
GAN



community.Much of the original information is inevitably lost
in the compression layer of the Encoder. This is inherent to the
process of dimensionality reduction and can cause an
imperfect reconstruction [34]. If the decoder cannot ful-
ly learn the salient features of raw data, it also cannot
transform noise z into realistic-like data using the inter-
polation method. The performance of the AutoEncoder
model cannot be guaranteed under such a scenario. Therefore,
we deem the GANmodel to be more suitable for our task than
AutoEncoder.

3.2 Simulation data generation with GAN

Although the GAN model has been widely used in many
fields, its application to numeric data generation has been very
limited. While applying the GAN to the numeric dataset to
generate simulation data is a trivial task, retaining the same, or
similar, statistical characteristics as the raw data presents more
of a challenge.

In Fig. 2, the data-span of raw data in sub-figure (a) is large
whereas the histogram of generated data (sub-figure (b)) fo-
cuses on a narrow range ∈ (30, 50). This indicates that the
GAN model basically learns features belonging to samples
within the range ∈ (30, 50). In other words, such generated
data loses the diversity of the original dataset. To be noted is
the range ∈ (30, 50) of raw samples holds a greater quantity of
data than other intervals.

To learn the characteristics from all intervals, we scale the
data range. In doing so the method can ignore a measure
among different features while retaining the same distribution
as the raw dataset. Additionally, since the GAN model can
more easily product generation with an easy-to-sample distri-
bution the generator more easily produces a distribution with a
small data-span (e.g., Uniform distribution ∈ [−1, 1] or
Gaussian distribution ∈ [0, −1]).

The goal of the GAN model is to transform a distribution
into another one. It holds no regard for retaining statistical
characteristics of the raw data. In this study, for generating
simulation data with statistical characteristics the same as the
raw data, we add the batch normalization function [35] to each

hidden layer, for both the discriminator and the generator, to
re-scale the output from each hidden layer. Just like the acti-
vation function or the convolutional layer, the batch normali-
zation is viewed as a layer of the network. In the low-layer
neural network, the parameters are updated during training,
changing the distribution of input in the next layer (this sce-
nario is named ‘Internal Covariate Shift’). The batch normal-
ization can address this issue.

Moreover, when we compare Figs. 2 and 4, we found that
the same model (GAN) uses different optimizers so the histo-
gram displays different statistical characteristics. The perfor-
mance shown in Fig. 4 is better than that of Fig. 2, indicating
the optimizer is an important factor for generating numerical
simulation data.

In general, the gradient method is closely related to an
algorithm’s convergence. If a gradient method is suitable for
an algorithm, the algorithm would converge at the global op-
timum value. If it is not suitable for the algorithm, it would
converge at the local optimum value. If the latter case scenario
occurs, the model would not hold good generalizability and
would perform poorly. There is not, however, consensus over
which gradient method a network should choose. Recent
works have had conflicting results. Kingma et al. [8] asserts
the performance of Adam is better than SGD with faster con-
vergence and avoidance of frequent fluctuation. Other studies
hold the opposite view. Hardt et al. [36] has shown that the
SGD is uniformly stable, generalizes well and solutions with
low training error are found quickly. Wilson et al. [37] ob-
served that the solutions found by adaptive methods (like
Adam, RMSProp) generalize worse (often significantly
worse) than SGD; this study encourages practitioners to use

Table 1 Using the Absolute Relative Residual and the Hellinger
Distance to calculate the similarity between two datasets. The Hellinger
Distance is from the SCIPY

ID Absolute relative residual Hellinger distance

P(X, Y) 9.9114 0.0599

P(X, Z) 15.3235 0.134

346 W. Li et al.

Fig. 5 An example to demonstrate histogram-based similarity measure. Sub-figure (a) indicates the original statistical results, while sub-figures (b) and
(c) indicate the different statistical results of generated data



the standard SGD method. WGAN [11] has also proven that
the Adam optimizer is worse than RMSProp and SGD, be-
cause Adam may even turn the gradients negative. Since the
adopted optimizer influences model performance and

argument still exists over which optimizer performs better, in
our study we adopt different optmizers in our generation of
simulation data from the raw dataset. The details of this can be
observed in the experiments section.
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Fig. 6 Sub-figure (a) uses the Adam gradient method, and sub-figure (b)
uses the Adagrad gradient method, and sub-figure (c) uses the RMSProp
gradient method. Sub-figure (d) uses the SGD +Nesterov momentum,

while sub-figure (e) only uses the SGD gradient method and (f) reflects
the statistical results of age field data samples

Fig. 7 Sub-figure (a) uses the Adam gradient method, and sub-figure (b)
uses the Adagrad gradient method, and sub-figure (c) uses the RMSProp
gradient method. Sub-figure (d) uses the SGD +Nesterov momentum,

while sub-figure (e) only uses the SGD gradient method and (f) reflects
the statistical results of PM2.5 data samples



3.3 Evaluation metrics

In this subsection, we will discuss the statistical evaluation
metrics. Let us refer back to sub-figure (a) in Fig. 2 and sub-
figure (b) in Fig. 4, in which different simulation data has
different statistical results. It remains an open question which
one is better. We use the statistical gap in the histogram, a
commonly used strategy [38], to measure the similarity be-
tween two datasets. We proceed to discuss this further.

Suppose there is a datasetX containing 15 samples [0.01, 0.2,
0.3, 0.4, 0.5,1.2, 1.1, 1.3, 1.6, 2.2, 2.5, 2.8, 3.3, 3.7, 4.3]. Sub-
figure (a) in Fig. 5 represents this data. Sub-figure (b) and sub-
figure (c) are the statistical results of different generated datasets
Y and Z, which are [0.1, 0.25, 0.32, 0.44, 0.49, 1.15, 1.23, 1.3,
1.8, 2.35, 2.65, 2.75, 3.35, 3.68, 4.2] and [0.13, 0.14, 0.16,
0.178, 0.189, 1.2, 1.34, 1.56, 1.65, 2.55, 3.2, 3.35, 3.78, 4.21,
4.25], respectively. From the perspective of confidentiality, the
two sub-figures (b) and (c) havemasked the original data shown
in sub-figure (a); from the perspective of statistics, the perfor-
mance of sub-figure (b) is obviously better than that of sub-
figure (c). Based on this example, the idea is to use statistical
methods to output a specific score to evaluate our generation:

– Absolute Relative Residual Values (ARR) [12].
– Hellinger Distance (HD) [13].

The residual values [12] equation can calculate the
relative difference between original data and generated
data on each sub-interval (we view each bin as the sub-
interval). The smaller the residual values are, the better
the performance is. The equation is defined as follows:

V ¼ ∑n
i¼1j

histxi−histzi
histxi

j ð3Þ

In Eq. 3, histxi indicates the original statistical quantity at i-
th sub-interval and histzi corresponds to the statistical quantity
of generation at i-th sub-interval.

In statistics, the Hellinger distance [13] is used to
quantify the similarity between two probabilistic distri-
butions, and it belongs to the f-divergence [39]. In our
study, we use the probability percentile to quantify the
similarity between two datasets. Assuming there are
two discrete probability distributions P = (p1, p2, ...pn)
and Q = (q1, q2, ..., qn), their equation is defined as
follows:

H P;Qð Þ ¼ 1
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
k

i¼1

ffiffiffiffi
pi

p
−

ffiffiffiffi
qi

p� �2
s

ð4Þ

We can reformulate Eq. (4) as the Euclidean distance of
two square root vectors, which is shown as follows.

Table 2 The absolute relative residual values and Hellinger distances
on age field with different gradient methods

Optimizer Absolute Relative Residual Hellinger distance

Adam 107.7575 0.059

Adagrad 32.4578 0.028

RMSProp 21.4728 0.035

SGD +Nesterov 12.6631 0.0103

SGD 5.5679 0.009

Table 3 The absolute relative residual values and Hellinger distances
on income field with different gradient methods

Optimizer Absolute Relative Residual Hellinger distance

Adam 120.7629 0.275

Adagrad 42.4338 0.206

RMSProp 132.6314 0.341

SGD +Nesterov 31.8296 0.167

SGD 17.1973 0.134
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Fig. 8 Sub-figure (a) indicates that we apply the regular WGANmodel to the age field while sub-figure (b) indicates that the regular WGANmodel has
been applied to the PM2.5 field



H P;Qð Þ ¼ 1
ffiffiffi
2

p ffiffiffi
P

p
−

ffiffiffiffi
Q

p���
��� ð5Þ

Our idea is based on relative frequency, counting the num-
ber of each entry falling in specific sub-intervals. Assuming
the samples are mapped into the interval [0,1], the two relative
frequencies would be equivalent if the two datasets have the
same probability distributions at each sub-interval. Thus, this
measure can exactly evaluate the difference of statistical

results on two datasets. The smaller the score is, the better
the performance is. The two evaluation metrics are comple-
mentary to each other, we then use them to calculate the sim-
ilarity between the dataset X and the dataset Y or Z. The
results are shown in Table 1.

Figure 5 shows that the dataset Y is more similar to dataset
X than dataset Z. The Absolute Relative Residual and the
Hellinger Distance, shown for the values in Table 1, are re-
flective of this.
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Fig. 9 We use the GAN model and four other data confidentiality
methods (bottomcoding method, multiple imputation method,
differential privacy method and Encoder-Decoder model) to mask the
census dataset (sub-figure (a)) and the PM2.5 dataset (sub-figure (b)).
We pick 30 samples for conveniently observing their differences. From
the two results, we can see that the GAN model, the Encoder-Decoder

model and the differential privacy method can mask all original samples.
The other methods are partially masking the original samples. Notice that
the Inception method is from the SKLEARN, and the Laplace function
within the differential privacy method is from the NUMPY. As for the
bottomcoding, the threshold is 0.2 for census dataset and 0.1 for PM2.5
dataset. Moreover, each circle node indicates a value



4 Experiment

To validate our approach, we choose a census dataset extract-
ed from the 1994 and 1995 population surveys conducted by
the U.S. Census Bureau, and an environmental dataset con-
taining the PM2.5 data of the US Embassy in Beijing between
Jan 1st, 2010 to Dec 31st, 2014. Supposing the two datasets
consist of sensitive information, our work is to use a genera-
tive model to generate simulation data to mask the original
samples. We use the regular GAN model with batch normal-
ization functions to generate the simulation data and compare
the performance of different gradient methods (Adam [8],
SGD [40], RMSProp [41], Adagrad [42] and Nesterov [43]).
To validate the merit of our idea on data confidentiality, we
would compare the GAN model with traditional data preser-
vation approaches.

4.1 Data description

The census dataset includes 199,523 samples with 42 features.
Since this dataset is a questionnaire, it contains many nature

language answers and some missing values on some fields.
We take 199,500 elements from the age field of the census
dataset to validate our idea.

The environmental dataset includes 43,824 samples with
13 features. This dataset is also a questionnaire but it contains
many missing values on some fields. We take 41,700 exam-
ples from the PM2.5 field of the environmental dataset as
training data.

4.2 Simulation data generation

First, we generate data on the census dataset. The implemen-
tation details of the GAN model are shown in Fig. 3. We
conduct experiments on age features with various optimizers.
The corresponding results are shown in Fig. 6 (here we try
with different optimizers while other hyper parameters remain
constant). Figure 6 shows that the SGD function outperforms
other optimizers.

From Fig. 6, the results shown in (d) and (e) are most
similar to original histogram, which means that the SGD is
better than other gradient methods when applied to numeric
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Fig. 10 We apply the Auto-Encoder model to the two datasets. Sub-figure (a) indicates that the Auto-Encoder has been applied to the age field in Census
dataset, while sub-figure (b) indicates that it has been applied to the PM2.5 field in environmental dataset

Fig. 11 We apply the differential privacy method to two datasets. Sub-figure (a) indicates that the differential privacymethod has been applied to the age
field in Census dataset, while sub-figure (b) indicates that it has been applied to the PM2.5 field in environmental dataset



data. We continue to apply this idea to the environmental
PM2.5 dataset with the same hyperparameters, changing the
batch size to 300. The results are shown in Fig. 7.

In this case, the performance of SGD gradient method still
is better than other optimizers. There are variants of the basic
GAN model [10] to choose from (described earlier). Here we
adopt the WGANmodel. TheWGAN transforms the discrim-
inative problem into a regression problem and theWasserstein
distance is a better metric than traditional Jensen-Shannon
divergence, which the other GAN variants adopt. Other
GAN variants have a similar generating mechanism as the
regular GAN model. Figure 8 shows the generated results on
Census and PM2.5 datasets with the WGAN model.

From Fig. 8, we can see the generated data performed
poorly based on the differences in these histograms when
compared with the raw data histograms (See sub-figures (f)
of Figs. 6 and 7). We think that the unsatisfactory generated
results are related to the weight clipping. For calculating the
Wasserstein distance, WGAN utilizes the network with pa-
rameter θ, limited to a certain range (e.g., θ ∈ [−0.01, 0.01]),
to approach the Wasserstein distance. However, if the param-
eters of the network have been limited to a certain range, the
outputs of the generator would also be limited to a certain
range [44]. Based on these results, we recommend our idea
as a promising data masking alternative to generate suitable
numerical samples. We now further explore if the statistical
characteristics of the generated data well mimics those of the
original data.

4.3 Evaluation using statistical knowledge

In this work we focus on simulation data assessment. We
measure the statistical similarity between generated data and
original data by using Absolute Relative Residual Values and
Hellinger distance. We first apply the two evaluation metrics
(the Absolute Relative Residual and the Hellinger distance) to
the age generation. The results are shown in Table 2.

From Table 2, we can see that the best performance is with
the SGD optimizer. Both shape and statistics show that the
simulation data generated by the GAN model with the
SGD optimizer can royally reflect the statistical charac-
teristics of raw data. We continue to apply the same
evaluation metric to the PM2.5 field. The results are
shown in Table 3.

From Table 3, we can see that the SGD is still the best. The
two groups of results show that the SGD gradient method is
better than other optimizer functions in the numeric dataset.

4.4 Comparing the GAN model with other data
confidentiality methods

We then compare the GAN model with other data confidenti-
ality methods (e.g., bottomcoding method [5], multiple

imputation method [1], differential privacy method [16] and
Encoder-Decoder model [29]) on the census dataset and
PM2.5 dataset. The results are shown in Fig. 9.

In Fig. 9, we can see that the GAN model [10], the
Encoder-Decoder model [29] and the differential privacy
method [16] can mask all original samples. Each value (circle
node) of simulation data generated by those models is differ-
ent from the corresponding value of the original data. As for
other methods, they just partially mask original samples, for
many values have not been masked (coincident point).
Although the GAN model, the Encoder-Decoder model and
the differential privacy method generated simulation data dif-
fers from the original data, we wonder if the generated data
can be used in practice. Figure 6 and Fig. 7 have shown the
statistical results generated by the GAN model; and the statis-
tical results generated by two other methods (Encoder-
Decoder and differential privacy) are shown in Fig. 10 and
Fig. 11.

The two statistical results (Figs. 10 and 11) show that they
are totally different from the original data on statistical char-
acteristics. This implicitly indicates that they cannot be used in
practice for analysis. In other words, those results prove the
effectiveness of our idea.

5 Conclusion

In this paper, we proposed a solution to the challenge of pre-
serving data confidentiality while retaining the statistical char-
acteristics of raw data. We utilized deep learning-based gen-
erative models (with various optimizers) to generate simula-
tion data, and we conducted extensive experiments on real-
world numeric Census and Environmental datasets. The re-
sults show the effectiveness of our idea.
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