
Optimal Bandwidth Allocation for
Web Crawler Systems

Weiping Zhu∗, Yaodong Li∗, Yi Xu†, and Xiaohui Cui‡§
∗School of Computer Science, Wuhan University, P. R. China
†Department of Mathematics, Southeast University, P. R. China

‡School of Cyber Science and Engineering, Wuhan University, P. R. China
{wpzhu, yaodongli, xcui}@whu.edu.cn, yixu@seu.edu.cn

Abstract—Web crawler is an important tool to obtain the
information from the Internet in time. In a typical web crawler
system with the limited bandwidth, there are many websites
required to be crawled with different time constraints. Existing
works about web crawler systems have not considered the
bandwidth allocation in such a complex environment and hence
the time constrains may not be properly satisfied. In this study,
we investigate the bandwidth allocation approaches for such a
web crawler system. The approaches are designed for both the
scenarios that the sequences of crawling websites can not be
changed and the scenarios that can. For the former scenario,
we propose approaches to control bandwidth for web crawlers
to minimize the maximum complete time or minimize the sum
of complete times of all web crawlers. For the latter scenario,
we propose a greedy algorithm based on crawling priorities,
and a optimal algorithm based on mixed integer programming.
Extensive simulations are conducted for validating the proposed
approaches, and the result show that our approaches achieve
desirable performance.
Index Terms—Bandwidth Allocation; Distributed Crawler

System; Time Control

I. INTRODUCTION

In the last decade, the amount of data in the Internet has
shown explosive growth [1]. These data contains a lot of
useful information, however, cause difficulties for people in
obtaining the information in time [2]. For example, when
a graduate seeks a job, he or she browses several dozens
of websites multiple times each day to catch the career
information. This leads to read a lot of redundancy or useless
content, and have difficulty in obtaining the latest information
at the first time.
A web crawler is a program that is capable of automatically

downloading web pages from the Internet and extracting
required information from them [3], [4]. A web crawler starts
from one or several initial webpages, and during the process
of crawling new webpages can be continuously generated
from the current page until a certain stop condition is satisfied
[5]. Web crawlers can be invoked quite often to obtain the
latest information and notify the users. A typical web crawler
system can manage hundred of websites for multiple users.
Web crawler is widely used in many fields including search

§Corresponding Author. Email: xcui@whu.edu.cn

engines [6], software testing [7], data analysis systems [8],
[9], and data mining and indexing applications [10].
Since the users often have different requirements in col-

lecting data from the websites, different time constraints are
required for the crawling tasks. To meet these time constraints
and minimize the execution time, the limited bandwidth
available should be allocated properly to the crawling tasks.
If the website cannot be crawling simultaneously due to
the bandwidth constraint, the sequence and time duration of
crawling for the websites require to be further considered.
There are existing works about the bandwidth control and

allocation. The work [11], [12] adapted activates the optimal
numbers of connections that the crawler opens simultane-
ously to fully utilize bandwidth. The work [13] achieved a
better utilization of the available bandwidth by attempting
to maintain as many as possible different websites in the
crawler system and keep the connection alive to retrieve
as many pages from a given website. The work [14], [15]
proposed approach to utilize limited bandwidth effectively by
assigning crawling task to the node whose physical address is
closer to the given website. The work [16], [17] introduced a
crawling methods based on mobile agent to utilize available
bandwidth. The work [18] design a migrating crawler archi-
tecture based on URL scheduling mechanism using Analytic
Hierarchy Process to utilize bandwidth effectively. The work
[19] proposed a task scheduling strategy based on weighted
round-robin to achieve load balance of nodes in a distributed
crawler systems. However, the works aforementioned have
not considered the time constrains specified for different
websites to be crawled. Therefore, it is highly demanded that
an approach is proposed to solve this problem for a web
crawler system.
In this study, we investigate the bandwidth allocation

problem for a web crawler system, in which there are
multiple websites on the Internet required to be collected
with time constrains. The approaches are designed for both
the scenarios that the sequences of crawling websites can
not be changed and the scenarios that can. For the former
scenario, we propose approaches to control bandwidth for
web crawlers to minimize the maximum complete time or
minimize the sum of complete times of all web crawlers. For

1146

2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation

978-1-7281-4034-6/19/$31.00 ©2019 IEEE
DOI 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00215

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 07:01:33 UTC from IEEE Xplore. Restrictions apply.

the latter scenario, we propose a greedy algorithm based on
the priorities of the crawling tasks, and a optimal algorithm
based on mixed integer programming. We perform extensive
simulations to validate our proposed approach. In summary,
this study makes the following contributions:

• We formulate the bandwidth allocation problem for a
web crawler system. The problem have several factors
including the number of websites to be collected, the
time constraints specified for each crawling tasks, the
bandwidth available, whether the crawling tasks’ se-
quence can be changed, and whether the crawling tasks
can be executed in multiple time durations.

• We proposed the optimal bandwidth allocation approach
for the web crawler system where the crawling tasks’
sequence cannot be changed. Two objectives are con-
sidered in the approach, including minimizing the maxi-
mum complete time and minimizing the sum of complete
times of all web crawlers.

• We proposed the optimal bandwidth allocation approach
for the web crawler system where the crawling tasks’ se-
quence can be changed. We propose a greedy algorithm
based on the priorities of the crawling tasks, and a
optimal algorithm based on mixed integer programming.

• We performed extensive simulations to validate the per-
formance of our proposed approach. The results show
that our approach achieves good performance in various
scenarios.

The remainder of this paper is organized as follows.
In Section II, we review the related works. The problem
formulation are described in Section III. Section IV includes
the system model. Then, we propose our solutions based on
analysis for the optimal objective of the problem in Section V.
Numeral results are presented and discussed in Section VI.
Finally, conclusions are given in Section VII.

II. RELATED WORK

In existing works, different bandwidth allocation approach-
es were used to improve efficiency of crawler system with
bounded bandwidth. The work [11] adapts the download rate
of crawlers to the difference of campus network environment
at different times of one day. The download rate is controlled
by controlling the number of connections that the crawler
opens simultaneously. Similarly, the work [12] sequentially
activates the optimal numbers of fetcher to fully utilize
bandwidth, where each fetcher corresponds a URL required
to be collected. The work [13] achieved a better utilization
of the available bandwidth by attempting to maintain as
many as possible different websites in the crawler system and
keep the connection alive to retrieve as many pages from a
given website. These approaches can effectively reduce the
waiting time before visiting the same website again. The
work [14] proposed approach to utilize limited bandwidth
effectively by assigning crawling task to the node whose
physical address is closer to the given website. The work

[15] avoided overlap network overheads by removing the urls
that had been crawled and assigning different urls to different
nodes to make use of limited bandwidth effectively. The work
[16], [17] introduced a crawling methods based on mobile
agent to utilize available bandwidth. The mobile agent can
reduce the HTTP overhead by transferring the crawler to the
source of the data and compress webpages before transmitted
back to local. The work [18] design a migrating crawler
architecture based on URL scheduling mechanism using
Analytic Hierarchy Process to utilize bandwidth effectively.
The work [19] proposed a task scheduling strategy based on
weighted round-robin to achieve load balance of nodes in a
distributed crawler systems. However, all the above works
had failed to consider time constrains specified for different
websites to be crawling. Our proposed approaches achieved a
high utilization of the available bandwidth in crawler system
with multiple websites, where time constrains were taken into
account.

III. PROBLEM FORMULATION
In a web crawler system, we assume that we want to collect

information from a number of websites. Then we program
crawlers for these websites to get web data. Two situations
is developed according to the sequences of crawling websites
can not be changed or the scenarios that can. This is.

• Situation 1: the sequences of crawling websites can not
be changed (sequence unchanged)

• Situation 2: the sequences can be changed (sequence
changed)

The details of situation 1 and situation 2 will respectively
illustrated in following.

A. Sequence Unchanged
In this situation, for each website, there is a web crawler

to collect the information from it. And each crawler asso-
ciate with a specify website and only crawl data from the
website. The information in each website is required to be
collected with a certain time constraint depending on their
priorities. The sum of all allocated bandwidth is limited
by the bandwidth available in the web crawler system. The
objective is to find the optimal bandwidth allocation among
these web crawlers to achieve the optimal time constraints.the
mathematical notations used is summarized in TABLE I.
In this condition, there are two kinds of optimal time

constraints for this problem. One is to minimize the maximum
download time of all websites, and the other is to minimize
the sum of download time of all websites. The first time
constraint is to finish all download tasks as soon as possible,
while the second time constraint is to minimize the total
system resource consumption. We formally formulate the
problem as follows.
Given
1) There are n websites whose information are required to

be collected.

1147

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 07:01:33 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MATHEMATIC NOTATIONS USED IN THIS PAPER

Symbol Meaning type of
data

n number of our spiders integer
U net speed constraint of our project float
Di bytes of our news to be crawled integer
vi allocated net speed of each spiders float
t∗
i

time limit for each spiders, 0 represent no limit float

2) Each website has the amount of data Di(i = 1, 2, ...n).
3) Each website has a time constraint of t∗i (i = 1, 2, ...n).
4) The maximum bandwidth for the web crawler system is

U .
determine the bandwidth vi(i = 1, 2, ...n) for each website

in any time such that
1) minmax ti
or 2) min

∑n
i=1(ti)

where ti is the end time of downloading of website i
subject to
1) The time duration for collecting the information of

website j(j = 1, 2, 3 · · ·n) should be no more than t∗j .
2)
∑
vi ≤ U .

3) there exist a minimum data amount for allocation, or
there exist a minimum bandwidth for allocation
each crawler to crawl the corresponding task minimizes

total system resource consumption. Firstly, We want the
system to complete the total amount of total tasks for the
least amount of time. Secondly, The minimum sum of time
for each crawler to crawl the corresponding task minimizes
total system resource consumption.
The basic idea of our approach is minimize crawling

time. Specifically, for each crawler i, we predict capacity of
Internet information Di to be crawled next moment and time
ti will be cost to crawl these task Di. So to make crawler
system reach optimal performance, our goal can be object
have two types:Firstly, We want the system to complete the
total amount of total tasks for the least amount of time.
Secondly, The minimum sum of time for each crawler to
crawl the corresponding task minimizes total system resource
consumption. These two expressions can be included in the
following formula.

B. Sequence Changed
In this situation, the number of websites to be crawled

is far greater than the number of the most crawlers that
our system execute simultaneously. So the websites must be
divided into batches to be crawled. In the business world, the
data company should satisfied the time demands of the client
in getting the data. if not, the company must compensate
the loss of client based on the amount of time exceeding
limit time. So we should minimize the sum of time to
crawl information from the websites. We get some parameters
through testing the crawler system and auxiliary software. The
problem not only involve the the variables in the TABLE I but
also the parameters. We formally formulate the problem as

TABLE II
MATHEMATIC NOTATIONS USED IN THIS PAPER

Symbol Meaning type of
data

n number of our spiders integer
U net speed constraint of our project float
Di bytes of our news to be crawled integer
vi allocated net speed of each spiders float
t∗
i

time limit for each spiders, 0 represent no limit float
v∗ allocated minimum net speed of each spiders float
t time of starting a crawler float
m the maximum number of our system can

execute
integer

follows and the mathematical notations used is summarized
in TABLE II.
Given
1) There are n websites whose information are required to

be collected.
2) Each website has the amount of data Di(i = 1, 2, ...n).
3) Each website has a time constraint of t∗i (i = 1, 2, ...n).
4) The maximum bandwidth for the web crawler system is

U .
5) The minimum allocated net speed of each spiders is v∗i .
6) The time for starting a crawler is t.
7) The maximum number of crawlers our system can

execute is m.
determine the bandwidth vi(i = 1, 2, ...n) for each website

in any time such that
min
∑n

i=1(ti)
where ti is the end time of downloading of website i
subject to
1) n > m.
2) The time duration for collecting the information of

website j(j = 1, 2, 3 · · ·n) should be no more than t∗j .
3)
∑
vk ≤ U in any time, where k is crawlers at a certain

time.
4) vi ≥ v∗

IV. SYSTEM IMPLEMENTATION

Data crawling method is a foundation of studying band-
width allocation. An efficient crawler and reasonable crawl-
ing strategy are important guarantee of testing bandwidth
allocation approaches. In the collecting data more effectively
and understanding crawler technology, we select the Scrapy
crawler framework as our crawling tool. Details about crawl-
ing tools, crawling strategy are introduced as followings.

A. Scrapy
Scrapy is an application framework for crawling web sites

and extracting structured data which can be used for a wide
range of useful applications, like data mining, information
processing or historical archival [20]. The architecture of
the framework is clear and it contains various middleware
interface. Scrapy is written in Python and uses the Twisted
asynchronous network library to handle network communi-
cation. It is an integrated system that includes an engine,

1148

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 07:01:33 UTC from IEEE Xplore. Restrictions apply.

������

����	���

�����
����

�������
���������

���������
�����������

�����������

Fig. 1. System Model

a scheduler, a downloader, Item Pipeline, and Spiders [21].
Users can easily implement a crawler by only customize some
modules. It is convenient for users who want to grab web
content and all kinds of pictures [22].

B. System Model

In this paper, we need collect some network task to test
bandwidth allocation approach. Besides, we need to imple-
ment some crawler crawling above the amount of network
tasks. The architecture of the entire system is included in Fig
1.
There are mainly four components in the system mod-

el:master is some crawlers written by Scrapy, which is
Responsible for collecting urls from the target site as the
task amount of the test algorithm; testspider is also some
crawlers written by Scrapy, which is Responsible for crawling
web pages based on crawler task information and bandwidth
allocation results; bandwidth allocation module is used to
allocate net speed for every spider of testspider; database is
used for storing links to be crawled.

V. THE SOLUTION

In this section, we study solution for the two Situations
described in Section III.

A. Sequence Unchanged

In this situation, we propose our solution to meet the min-
max time objective and min-sum time objective described in
Section III. In these two problems, we need to set t∗i for
crawling every task. we want to reach the two goals as the
following.

• Type 1:min max ti
• Type 2:min

∑n
i=1(ti)

The basic idea and details of Type1(min-max) and
Type2(min-sum) will respectively illustrated in following.

Algorithm 1: Type1: Minimize the Maximum Complete
Time of All Crawlers (M-MAXT)
Input: sitelist containing information of all website and

U
Output: net speed for each website

1 sort task that not allocated by t∗i ascendingly;
2 calculate the average time of remaining tasks: t
3 if t < the first t∗i then
4 calculate net speed based t;
5 End;
6 else
7 foreach task do
8 if t is lager than t∗i and t∗i �= 0 then
9 allocate net speed for the task according to

Di and t∗i ;
10 else
11 do nothing;
12 end
13 end
14 end
15 repeat line 1 to 14

1) Type 1: Min-Max: In this type, we need to minimize
the max(ti).
We consider the situation without time constraint first.

In this situation, we just require to allocate vj proportional
to their data amount Dj . All web crawlers will finish their
download task at the time t. It is easy to calculate the

t =
ΣDj

U
(1)

Then we put the time constraints t∗i (i = 1, 2, ...n) into
consideration. We propose a greedy algorithm to solve this
problem. We sort the tasks by the t∗i in ascending order. The
average time of the unallocated web sites t̄ is calculated as
follows:

t̄ =
ΣDi(i ∈ unallocated)

Uunallocated
(2)

where unallocated denotes the unallocated web sites and
Uunallocated is the remaining available bandwidth. The smallest
t∗i �= 0 is compared with t̄. If t∗i > t̄, the information of
all the remaining web sites can be downloaded before their
time constraints. Therefore, all the remaining web sites are
assigned bandwidth proportional to their weights. Otherwise,
the website i under considering is assigned the bandwidth
vi = Di

t∗
i

. This is the the minimum bandwidth required to
meet its time constraint and maximal remaining bandwidth
are left for other web sites. This process is repeated until
all the websites are considered. The bandwidth allocation is
failed if the unallocated bandwidth is less than or equal to 0.
The detailed algorithm can be seen in Algorithm 1.

1149

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 07:01:33 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Type2:Minimize the Sum of Complete
Times of All Crawlers (M-SUMT)
Input: sitelist containing information of all website and

U
Output: net speed for each website

1 sort tasks unallocated by t∗i ascendingly;
2 foreach task do
3 calculate ti based equation (5);
4 end
5 if ∀ti < t∗i then
6 foreach task do
7 calculate vi based (5);
8 end
9 End;
10 else
11 foreach task do
12 if ti > t∗i and ti �= 0 then
13 set vi = Di

t∗
i

;
14 else
15 send task to list unallocated;
16 end
17 end
18 end
19 repeat line 1 to 18

2) Type 2: Min-Sum: In this type, we need to minimize the∑n
i=1(ti), which is equals to find the avg

∑n
i=1(ti). Similarly,

we consider the unconstraint situation first.
According to Cauchy inequality, we have

(
∑ Di

vi
)(
∑

vi)≥(
∑√

Di)
2 (3)

The equal condition is hold when

∀i, Di

v2i
= λ (4)

where λ is a constant. Since
∑
vi = U , we can figure out

that

vi =
U
√
Di∑√
Di

(5)

According to Lagrange multiplier method, we assume there
are m of n websites have time constraints. The Lagrange
function is

L(vi, λj) =

n∑

i=1

Di

vi
− λj(t∗i −

Di

vi
) − μ(U −

n∑

i=1

vi) (6)

The optimal solution is obtained by

∇LV = 0, λj(t
∗
i −

Di

vi
) = 0, λj≥0,

Di

vi
≥ 0 (7)

Then we know our vi have only two choices,vi = Di

t∗
i

and
vi = Uremain

√
Di∑√

Di

, and the last choice is better. So we need to

pick up the tasks which cannot satisfy the last choice. Every
time we sort the tasks by t∗i ascendingly. We let every task
follow first choice at the beginning in order, if it cannot satisfy
the constraint condition then we switch the vi into the second
choice. Then we resort them and go through this procedure
again.
By solving it, we have vi = Di

t∗
i

, λj �= 0 or λj = 0. When
λj = 0 holds, all the solution of vi except for vi = Di

t∗
i

are
in the feasible domain. This is a special case of the problem
solved at the beginning of this section. The bandwidth of all
crawlers are assigned proportionally. We have

vi =

√
Di

∑√
Di

Uremain

. (8)

where Uremain is remaining bandwidth after the boundary
conditions are met. The minimum value must be obtained in
one of the two cases for each vi aforementioned.
So our idea is to separate the two queues to calculate

vi according to the optimal solution condition. The optimal
situation is definitely that there is no time limited that is the
first type of optimal solution conditions is fully satisfied.
If the first type of condition cannot be met at this time,
then it is placed in the queue of the second type of optimal
solution condition. Then we firstly do a pre-allocation that is
only allocated according to the first category of conditions.
For the vi assigned, the website that cannot meet the time
limited is placed in the second queue, and vi is calculated
according to the second type of condition. Since Uremain
of the remaining site is reduced, the remaining sites i + 1
to n are once again assigned according to the first type of
condition. The websites that does not meet the time limit is
found and assigned according to the second type of condition.
The websites behind are then reassigned according to the first
type of conditions...Iterative allocation like this. If all sites
meet two types of conditions, then the end. The situation
allocation failure is that unallocated bandwidth is less than
or equal to 0 after all websites with time limited has been
assigned or the remaining bandwidth is not enough to support
the site to run within the time limited. The process described
above can be expressed as Algorithm 2.

B. Sequence Changed
In this situation, we propose two algorithm to achieve a

optimal bandwidth allocation. The first is a greedy algorithm
based on crawling priority queue (CPQ), and second is
a optimal algorithm based on mixed integer programming
(MIP). The details of CPQ algorithm is the following.

• These tasks is sorted in ascending order, based on their
limit time. A task with less limit time will has a higher
priority.

• The websites ws with the same number as crawlers are
popped from the queue and are assigned to the crawlers.

• For the crawler of website i, The net speed vi =
Di/
∑

j∈wsDjU .

1150

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 07:01:33 UTC from IEEE Xplore. Restrictions apply.

50 100 150 200 250

net speed of the crawler v (kb/s)

200

400

600

800

1000

1200

1400

1600

ex
ec

ut
io

n
tim

e
of

 c
ra

w
le

r t
 (s

)

Fig. 2. The fitting relation of t-v

0.5 1 1.5 2 2.5

size of task to be crawled D (kb) 104

50

100

150

200

250

300

ex
ec

ut
io

n
tim

e
of

 c
ra

w
le

r t
 (s

)

Fig. 3. The fitting relation of t-D

• repeat step 2,3 until the queue is empty.
The details of MIP algorithm is the following.
1) All websites are divide lots of batches and we assume
the time for the first batch websites crawled is start time
t0.

2) The time for crawling all websites is divided into lots
of fixed-size time interval tf and start from t0.

3) Then, we chose a set of websites w to be crawled in
every time interval and the number of these websites is
equal to m.

4) set two constraints in every time interval:
∑

j∈w(vj) ≤
U and

∑
k∈w(Dk) ≤ (U ∗ tf).

5) get minimum
∑n

i=1(ti) by a optimal division of web-
sites.

6) optimal the objective with constraints by Yalmip and
CLPEX integrated optimization.

VI. EXPERIMENTAL RESULTS

The experimental system is implemented in pure Python.
Due to limitations of equipment, This experiment simulates a
distributed environment through multi-progress. NetBalancer
[23] are freeware programs that are used to control the
speed of downloading and uploading files and are installed
in normal end clients in the experiment. Firstly, we need
to verify the relation of time, net speed and size of task
of crawler. We conducted two sets of experiments to find
separately the relation of time and net speed and the relation
of time and size of task in the same website. The size of task
is the size of webpages to be crawled. Fig. 2 show the fitting
result of time and net speed of the crawler. From the figure,
we can see that time is inversely proportional to net speed.
Fig. 3 show the fitting result of time and size of task of the
crawler. The figure indicate that the time is linearly related
to size of task of the crawler. So we can get the relation of
time, net speed and size of task of crawler as following.

t =
ξD
v

(9)

In this experiment, ξ is constant. After that, we did the
same experiment for the other websites we were going to
crawl. we find the time, net speed and size of task of crawler
for these websites follow the same rules. But the ξ of each
website is different. So to test the algorithms described in
Section V, we need set Di = ξDi.

A. Sequence Unchanged
In this situation, we write six crawlers to crawl webpages of

six different websites. The size of webpages of every website
to be crawled is different. We conduct experiments on three
influencing factors (i.e. bandwidth, task to be crawled and
time constrains) separately in the following. (1) We specify
the amount of each crawler task and test and compare the
results of the two algorithms when the total network down-
load speed is different. We designed 4 sets of experiments
and the total net speed of the experiments is respectively
800,900,1000,1100; and the unit is kbps. (2) We specify
the total network download speed, and test and compare the
results of the two algorithms in the case where each crawler
has different amounts of tasks to be crawled. We designed 4
sets of experiments and the size of webpages of same website
to be crawled in each set of experiments is different. (3) We
specify the amount of each crawler task and the total network
download speed, and test and compare the results of the two
algorithms in the case the time limited varies in degree of
rigor. The degree of rigor of time limited can be measured
by the
∑

Di

t∗
i

(t∗i �= 0). The larger the value of this formula,
the larger degree of rigor it is. Otherwise, the smaller degree
of rigor it is. We designed 4 sets of experiments and the
degree of rigor of time limited is increase.
In this section, algorithm M-MAXT and M-SUMT were

tested and compared in three types of datasets mentioned in
previous paragraph. Fig. 4 and Fig. 5 separately show the
result of comparison of maximum crawling time between the
two algorithms in the series experiments of (1). Fig. 6 and
Fig. 7 separately show the comparison of sum of crawling
time for all website contents between the two algorithms in
the series experiments of (2). From these figures, we can

1151

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 07:01:33 UTC from IEEE Xplore. Restrictions apply.

800 900 1000 1100
Total bandwidth U (kb/s)

0
20
40
60
80

100
120
140
160
180

M
ax

im
um

 c
om

pl
et

e
tim

e
t (

s)

M-MAXT
M-SUMT

Fig. 4. comparison of maximum time for two
algorithms under different bandwidths

800 900 1000 1100

Total bandwidth U (kb/s)

200

300

400

500

600

700

800

900

1000

S
u

m
 o

f
c
o
m

p
le

te
 t

im
e
 t

 (
s)

M-MAXT
M-SUMT

Fig. 5. comparison of sum of time for two
algorithms under different bandwidths

dataset1 dataset2 dataset3 dataset4
Size of data to be crawled

0

20

40

60

80

100

120

140

160

180

M
ax

im
um

 c
om

pl
et

e
tim

e
t (

s)

M-MAXT
M-SUMT

Fig. 6. comparison of maximum time for two
algorithms under different sizes of webpages of
each crawler to be crawled

dataset1 dataset2 dataset3 dataset4
Size of data to be crawled

200

300

400

500

600

700

800

900

Su
m

 o
f c

om
pl

et
e

tim
e

t (
s) M-MAXT

M-SUMT

Fig. 7. comparison of sum of time for two
algorithms under different sizes of webpages of
each crawler to be crawled

set1 set2 set3 set4
Sets of different time limits

0

30

60

90

120

150

180

210

M
ax

im
um

 c
om

pl
et

e
tim

e
t(s

)

M-MAXT
M-SUMT

Fig. 8. comparison of maximum time for two
algorithms under different limitation of time

set1 set2 set3 set4
Sets of different time limits

720

740

760

780

800

Su
m

 o
f c

om
pl

et
e

tim
e

t(s
) M-MAXT

M-SUMT

Fig. 9. comparison of sum of time for two
algorithms under different limitation of time

see that the maximum crawling time of M-MAXT is less
than M-SUMT, but the sum of crawling time of M-SUMT is
less than M-MAXT. Fig. 8 and Fig. 9 separately describes
the difference between M-MAXT and M-SUMT with the
increase of the degree of rigor of time limited. the conclusion
is same to the former two sets of experiments. We also
observed that along with the increase of the degree of rigor
of time limited, the difference between M-MAXT and M-
SUMT almost constant in terms of maximum execution time
of the crawler. Nevertheless, the difference between the two
algorithms for sum of execution time of all crawlers decrease
with the increase of the degree of rigor of time limited.
The degree of rigor of time limited can be measured by the∑

Di

t∗
i

(t∗i �= 0). The larger the value of this formula, the
larger degree of rigor it is.

B. Sequence Changed
In this situation, we consider a application scenario where

there are 600 websites and a crawler system with 30 crawlers.
Two simulations was implemented to verify the performance
of our proposed CPQ algorithm and MIP algorithm.
In this subsection, we examine the impact of the number of

bandwidth U on execution time. Fig. 10 denotes the sum of
time for all crawlers of PQ-DB and MILP when U varies from

6 to 10. From Fig. 10, we can draw several observations. First,
the sum of execution time of the proposed PQ-DB, as well as
MILP and increases rapidly as the number of total bandwidth
becomes small. The reason is that the execution time is
negatively and linearly related to the number of bandwidth.
Second, the performance of the proposed PQ-DB significantly
outperforms the policies MILP. Then, we compare the pro-
posed PQ-DB algorithm with the MILP alogrithm. Fig. 11
plots the comparison of end time when all websites crawled
between PQ-DB and MILP with respect to the number of
total bandwidth. From the results, we can see that the end
time of the above two policies respectively decreases with
the increasement of U. Moreover, the performance of the
proposed PQ-DB is better than MILP in bandwidth allocation.

VII. CONCLUSION
In this paper, we have presented some approaches to

allocate the bandwidth for a crawler system with different
time constraints. we designed different schemes according
to two different scenarios that the sequences of crawling
websites can not be changed and the scenarios that can.
Then different optimal objective is defined and corresponding
algorithms are developed to achieve them. The detail proce-
dures of the bandwidth allocation for crawlers are described.

1152

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 07:01:33 UTC from IEEE Xplore. Restrictions apply.

6 7 8 9 10
Total bandwidth of the system U(M/s)

0

2

4

6

8

10

12

14

Su
m

 o
f e

xe
cu

te
 ti

m
e

of
 a

ll
cr

aw
le

rs
 t(

s)

104

CPQ
MIP

Fig. 10. comparison of sum of execution time under different policies with
different bandwidth

6 7 8 9 10
Total bandwidth of the system U(M/s)

0

500

1000

1500

2000

2500

3000

3500

4000

En
d

tim
e

w
he

n
al

l w
eb

si
te

s
cr

aw
le

d
t(s

)

CPQ
MIP

Fig. 11. comparison of end time when all websites are crawled under
different policies with different bandwidth

Moreover, we perform extensive simulations to verify these
approaches in terms of bandwidth time constrains and task
to be crawled. The results show that our approach achieves
good performance in various scenarios.

ACKNOWLEDGMENT
We thank Shu Li for developing the bandwidth allocation

algorithm for the environment that the crawling sequence
cannot be changed. This research is supported in part by
National Key R&D Program of China No. 2018YFC1604000,
Chutian Scholars Program of Hubei, China, 2018 Science and
Technology Transformation Project of Grain Administration
of Hubei Province “Grain and Oil Quality & Safety Assur-
ance System Research”, and 2018 English Course Project of
Wuhan University “Business Intelligence”.

REFERENCES
[1] R. Ding and M. Wang, “Design and implementation of web crawler

based on coroutine model,” in Cloud Computing and Security, X. Sun,
Z. Pan, and E. Bertino, Eds. Cham: Springer International Publishing,
2018, pp. 427–435.

[2] M. Kumar, R. Bhatia, and D. Rattan, “A survey of web crawlers for
information retrieval,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 7, no. 6, p. e1218, 2017.

[3] Y. Wang, Z. Hong, and M. Shi, “Research on lda model algorithm
of news-oriented web crawler,” in 2018 IEEE/ACIS 17th International
Conference on Computer and Information Science (ICIS), vol. 00, June
2018, pp. 748–753.

[4] T. Y. Chun, “World wide web robots: an overview,” Online Information
Review, vol. 23, no. 3, pp. 135–142, 1999.

[5] J. Cho, “Crawling the web: Discovery and maintenance of large-scale
web data,” Ph.D. dissertation, Stanford, CA, USA, 2002, aAI3038076.

[6] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan,
“Searching the web,” ACM Transactions on Internet Technologies,
vol. 1, no. 1, pp. 2–43, 2001.

[7] S. Raina and A. Prakash Agarwal, “How crawlers aid regression testing
in web applications: The state of the art,” International Journal of
Computer Applications, vol. 68, no. 14, pp. 33–38, 2014.

[8] C. H. Lau, X. Tao, D. Tjondronegoro, and Y. Li, “Retrieving informa-
tion from microblog using pattern mining and relevance feedback,” in
Proceedings of Data and Knowledge Engineering. Springer Berlin
Heidelberg, 2012, pp. 152–160.

[9] R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L. Zhang, “irobot: An intelli-
gent crawler for web forums,” in Proceedings of the 17th International
Conference on World Wide Web. New York, NY, USA: ACM, 2008,
pp. 447–456.

[10] J. Edwards, K. McCurley, and J. Tomlin, “An adaptive model for
optimizing performance of an incremental web crawler,” in Proceedings
of the 10th International Conference on World Wide Web, ser. WWW
’01. New York, NY, USA: ACM, 2001, pp. 106–113.

[11] V. Shkapenyuk and T. Suel, “Design and implementation of a high-
performance distributed web crawler,” in Proceedings 18th Interna-
tional Conference on Data Engineering, Feb 2002, pp. 357–368.

[12] M. Diligenti, M. Maggini, F. M. Pucci, and F. Scarselli, “Design
of a crawler with bounded bandwidth,” in Proceedings of the 13th
International World Wide Web Conference on Alternate Track Papers
&Amp; Posters, ser. WWW Alt. ’04. New York, NY, USA: ACM,
2004, pp. 292–293.

[13] C. Castillo, M. Marin, A. Rodriguez, and R. Baeza-Yates, “Schedul-
ing algorithms for web crawling,” in WebMedia and LA-Web, 2004.
Proceedings, Oct 2004, pp. 10–17.

[14] M. Kc, M. Hagenbuchner, and A. C. Tsoi, “A scalable lightweight
distributed crawler for crawling with limited resources,” in 2008
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, vol. 3, Dec 2008, pp. 663–666.

[15] D. Yadav, A. Sharma, and J. Gupta, “Parallel crawler architecture
and web page change detection,” WSEAS Transactions on Computers,
vol. 7, pp. 929–940, 07 2008.

[16] N. Singhal, R. P. Agarwal, A. Dixit, and A. K. Sharma, “Information
retrieval from the web and application of migrating crawler,” in 2011
International Conference on Computational Intelligence and Commu-
nication Networks, Oct 2011, pp. 476–480.

[17] S. K. S. Md. Abu Kausar, V. S. Dhaka, “Web crawler based on mobile
agent and java aglets,” International Journal of Information Technology
and Computer Science(IJITCS), vol. 5, no. 10, pp. 85–91, 2013.

[18] D. Punj and A. Dixit, “Design of a migrating crawler based on a novel
URL scheduling mechanism using AHP,” IJRSDA, vol. 4, no. 1, pp.
95–110, 2017.

[19] D. Ge and Z. Ding, “A task scheduling strategy based on weighted
round-robin for distributed crawler,” in 2014 IEEE/ACM 7th Interna-
tional Conference on Utility and Cloud Computing, Dec 2014, pp. 848–
852.

[20] J. Wang and Y. Guo, “Scrapy-based crawling and user-behavior char-
acteristics analysis on taobao,” in 2012 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery, Oct
2012, pp. 44–52.

[21] D. Myers and J. McGuffee, “Choosing scrapy,” Journal of Computing
Sciences in Colleges, vol. 31, pp. 83–89, 10 2015.

[22] Y. Liang, Y. Zhao, D. Que, X. Zhang, and C. Xu, “Online fake drug
detection system in heterogeneous platforms using big data analysis,”
in 2016 7th International Conference on Cloud Computing and Big
Data (CCBD), Nov 2016, pp. 308–311.

[23] S. Srl, “Netbalancer.” [Online]. Available: http://netbalancer.com/.

1153

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 07:01:33 UTC from IEEE Xplore. Restrictions apply.

